Brownian Motion and Stochastic Calculus

Exercise sheet 5

 $\label{eq:Please} Please \ hand \ in \ your \ solutions \ during \ exercise \ class \ or \ in \ your \ assistant's \ box \ in \ HG \ E65 \ no \ latter \ than \\ March \ 31th$

Exercise 5.1 Let $(W_t)_{t\geq 0}$ be a Brownian motion. Moreover, let \mathbb{F}^0 be the (raw) filtration generated by W and \mathbb{F} its right-continuous modification. Let τ be an \mathbb{F} -stopping time with $\tau < \infty$ P-a.s. and $\widetilde{W}_{\cdot} := W_{\tau+\cdot} - W_{\tau}$. Prove that \widetilde{W} is independent of \mathcal{F}_{τ} .

Hint: Use the monotone class theorem and approximate τ from above as on page 46 of the script.

Solution 5.1 We have to prove the independence of the σ -fields $\sigma(\widetilde{W}_t; t \ge 0)$ and \mathcal{F}_{τ} . By Dynkin's theorem (and since $\widetilde{W}_0 = 0$ *P*-a.s.), it is enough to prove the independence of \mathcal{F}_{τ} and the family \mathcal{Z} of cylinder sets

$$\mathcal{Z} = \left\{ \left\{ \widetilde{W}_{t_1} \in A_1, \widetilde{W}_{t_2} - \widetilde{W}_{t_1} \in A_2, \dots, \widetilde{W}_{t_n} - \widetilde{W}_{t_{n-1}} \in A_n \right\}; \\ n \in \mathbb{N}, \ 0 \le t_1 \le \dots \le t_n, \ A_1, \dots, A_n \in \mathcal{B}(\mathbb{R}) \right\},$$

as \mathfrak{Z} is a π -system generating $\sigma(\widetilde{W}_t; t \ge 0)$. As usual, approximate τ with the sequence of stopping times $\tau_m = \sum_{k\ge 0} \frac{k+1}{2^m} \mathbf{1}_{\{\frac{k}{2m} \le \tau < \frac{k+1}{2m}\}}$, and define the processes $\widetilde{W}_{\cdot}^m = W_{\tau_m+\cdot} - W_{\tau_m}$. Take $A \in \mathcal{F}_{\tau}$ and $f_1, \ldots f_n$ bounded and continuous on \mathbb{R} . As τ_m only takes a countable number of different values, we get for $t_0 = 0$

$$\begin{split} & E\left[\mathbf{1}_{A}\prod_{i=1}^{n}f_{i}(\widetilde{W}_{t_{i}}^{m}-\widetilde{W}_{t_{i-1}}^{m})\right] \\ &=\sum_{k\geq0}E\left[\mathbf{1}_{\{\frac{k}{2^{m}}\leq\tau<\frac{k+1}{2^{m}}\}}\mathbf{1}_{A}\prod_{i=1}^{n}f_{i}(W_{\frac{k+1}{2^{m}}+t_{i}}-W_{\frac{k+1}{2^{m}}+t_{i-1}})\right] \\ &=\sum_{k\geq0}E\left[\prod_{i=1}^{n}f_{i}(W_{\frac{k+1}{2^{m}}+t_{i}}-W_{\frac{k+1}{2^{m}}+t_{i-1}})\right]P\left[\left\{\frac{k}{2^{m}}\leq\tau<\frac{k+1}{2^{m}}\right\}\cap A\right], \end{split}$$

since $\{\frac{k}{2^m} \leq \tau < \frac{k+1}{2^m}\} \cap A$ is in $\mathcal{F}_{\frac{k+1}{2^m}}$ and $W_{\frac{k+1}{2^m}+.} - W_{\frac{k+1}{2^m}}$ is independent of $\mathcal{F}_{\frac{k+1}{2^m}}$. By the stationarity of the Brownian increments, for each $n \in \mathbb{N}$ and $0 \leq t_0 \leq \ldots \leq t_n < \infty$ we have for each h > 0 that $W_{t_j+h} - W_{t_{j-1}+h} \stackrel{(d)}{=} W_{t_j} - W_{t_{j-1}}$ for $j = 1, \ldots, n$. So we get that for each $k \in \mathbb{N}_0$

$$E\bigg[\prod_{i=1}^{n} f_i(W_{\frac{k+1}{2^m}+t_i} - W_{\frac{k+1}{2^m}+t_{i-1}})\bigg] = E\bigg[\prod_{i=1}^{n} f_i(W_{t_i} - W_{t_{i-1}})\bigg].$$

Therefore with the same arguments as above for $A = \Omega$ that

$$E\bigg[\prod_{i=1}^{n} f_i(W_{\tau_m+t_i} - W_{\tau_m+t_{i-1}})\bigg] = E\bigg[\prod_{i=1}^{n} f_i(W_{t_i} - W_{t_{i-1}})\bigg].$$

This implies together with the result above that

$$E\left[\mathbf{1}_A\prod_{i=1}^n f_i(\widetilde{W}_{t_i}^m - \widetilde{W}_{t_{i-1}}^m)\right] = E\left[\prod_{i=1}^n f_i(W_{t_i} - W_{t_{i-1}})\right]P[A].$$

Updated: April 3, 2017

As $m \to \infty$, $\tau_m \searrow \tau$ and $f_j(W_{\tau_m+t_j} - W_{\tau_m+t_{j-1}}) \to f_j(W_{\tau+t_j} - W_{\tau+t_{j-1}})$ *P*-a.s. for $j = 1, \ldots, n$ by the *P*-a.s. right-continuity of Brownian paths and the continuity of f_j . Therefore we get with Lebesgue's dominated convergence theorem

$$E\left[\mathbf{1}_{A}\prod_{i=1}^{n}f_{i}(\widetilde{W}_{t_{i}}-\widetilde{W}_{t_{i-1}})\right] = E\left[\prod_{i=1}^{n}f_{i}(\widetilde{W}_{t_{i}}-\widetilde{W}_{t_{i-1}})\right]P[A].$$
(1)

To extend (1) to measurable and bounded functions f_1, \ldots, f_n we extend it successively for each f_j with $j \in \{1, \ldots, n\}$ by applying the monotone class theorem. Fix $j \in \{1, \ldots, n\}$ and assume that (1) holds for f_1, \ldots, f_{j-1} measurable and bounded and $f_j, \ldots, f_n \in C_b(\mathbb{R})$. Set $\mathcal{M} = C_b(\mathbb{R})$ and

$$\mathcal{H} = \{f \text{ measurable and bounded } | (1) \text{ holds for } f_1, \dots, f_{j-1} \text{ measurable and bounded}, \\ f_j = f, \text{ and } f_{j+1}, \dots, f_n \in C_b(\mathbb{R}) \}.$$

As $C_b(\mathbb{R})$ is a vector lattice that generates $\mathcal{B}(\mathbb{R})$ (see script "Wahrscheinlichkeitstheorie", Beispiel V.1.1) (1) follows for f_j measurable and bounded by noting that \mathcal{H} is a real vector space of bounded real-valued functions containing \mathcal{M} and 1 and is closed under bounded monotone convergence. By plugging in indicator functions of Borel sets we finally get the independence of \widetilde{W} of \mathcal{F}_{τ} .

Exercise 5.2 Let $W = (W_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R} and define the *integrated Brownian* motion $Y = (Y_t)_{t\geq 0}$ by $Y_t = \int_0^t W_s ds$. Moreover, let $\mathbb{F}^W := (\mathcal{F}^W_t)_{t\geq 0}$ be the raw filtration generated by W.

(a) For each $h \ge 0$, show that the pair (W_h, Y_h) has a two-dimensional normal distribution with mean zero and covariance matrix given by

$$\begin{pmatrix} h & h^2/2 \\ h^2/2 & h^3/3 \end{pmatrix}$$

Hint: First, show that (W_h, Y_h) has a two-dimensional normal distribution by approximating Y_h by Riemann sums and using Exercise **3-3**. Second, use Fubini's theorem to compute the covariance matrix.

(b) Show that the pair (W, Y) is a (homogeneous) Markov process with state space \mathbb{R}^2 , filtration \mathbb{F}^W and transition semigroup $(K_h)_{h>0}$ given by

$$K_h((w,y),\cdot) = \mathcal{N}\left(\begin{pmatrix} w\\ y+hw \end{pmatrix}, \begin{pmatrix} h & h^2/2\\ h^2/2 & h^3/3 \end{pmatrix}\right), \quad h \ge 0.$$

(c) Show that Y alone is **not** a Markov process with respect to \mathbb{F}^W .

Solution 5.2

(a) Fix $h \ge 0$. Write $(W_h, Y_h) = \lim_{n \to \infty} (W_h, \frac{h}{n} \sum_{i=0}^{n-1} W_{\frac{i}{n}h}) =: \lim_{n \to \infty} (W_h, Y_h^n)$. For each n, the random pair $(W_h, \frac{h}{n} \sum_{i=0}^{n-1} W_{\frac{i}{n}h})$ is a linear transformation of the Gaussian random vector $(W_{\frac{i}{n}h})_{i=0,\dots,n}$ and as such Gaussian itself. To show that (W_h, Y_h) is a Gaussian vector, we need to show that for any scalar $a_1, a_2 \in \mathbb{R}$, we have that $a_1 W_h + a_2 Y_h$ is normal distributed. Fix $a_1, a_2 \in \mathbb{R}$. It is clear that $a_1 W_h + a_2 Y_h = \lim_{n \to \infty} a_1 W_h + a_2 Y_h^n$ pointwise, in particular in distribution. By Exercise 3-3, we know that the limit (in distribution, say) of Gaussian random variables is Gaussian. Thus, we conclude that $a_1 W_h + a_2 Y_h$ is a Gaussian random variable, and hence (W_h, Y_h) is a Gaussian vector. Thus, it only remains to compute mean vector and covariance matrix of (W_h, Y_h) .

Clearly, $E[W_h] = 0$ and using Fubini's theorem, we see that $E[Y_h] = 0$ as well. Next, $Var(W_h) = h$, and using Fubini's theorem, we get

$$\operatorname{Var}[Y_h] = E\left[\left(\int_0^h W_r \, dr\right)^2\right] = E\left[\int_0^h W_r \, dr \int_0^h W_s \, ds\right] = E\left[\int_0^h \int_0^h W_r W_s \, dr \, ds\right]$$
$$= \int_0^h \int_0^h E[W_r W_s] \, dr \, ds = \int_0^h \int_0^h r \wedge s \, dr \, ds = \int_0^h \left(\int_0^s r \, dr + \int_s^h s \, dr\right) \, ds$$
$$= \int_0^h \left(\frac{s^2}{2} + s(h - s)\right) \, ds = -\frac{h^3}{6} + \frac{h^3}{2} = \frac{h^3}{3}.$$

Finally, again using Fubini's theorem,

$$\operatorname{Cov}(W_h, Y_h) = E\left[W_h \int_0^h W_s \, ds\right] = \int_0^h E[W_h W_s] \, ds = \int_0^h s \, ds = \frac{h^2}{2}.$$

(b) Let $(\mathcal{F}_t^W)_{t\geq 0}$ denote the (raw) filtration generated by $W, f : \mathbb{R}^2 \to [0, \infty)$ a bounded Borel function, and $t \geq 0, h > 0$. By construction, Y is (\mathcal{F}_t^W) -adapted. Moreover, writing

Updated: April 3, 2017

 $W_{t+h} = W_t + (W_{t+h} - W_t), Y_{t+h} = Y_t + \int_t^{t+h} W_s \, ds = Y_t + hW_t + \int_t^{t+h} (W_s - W_t) \, ds$, and using the fact that $(W_{t+s} - W_t)_{s \ge 0}$ is independent of \mathcal{F}_t^W , we obtain

$$E[f(W_{t+h}, Y_{t+h})|\mathcal{F}_t^W] = E\left[f\left(w + (W_{t+h} - W_t), y + hw + \int_t^{t+h} (W_s - W_t) \, ds\right)\right]\Big|_{w = W_t, y = Y_t}$$

By translation invariance of Brownian motion,

$$\left(W_{t+h} - W_t, \int_t^{t+h} (W_s - W_t) \, ds\right) \stackrel{d}{=} \left(W_h, \int_0^h W_s \, ds\right) = (W_h, Y_h).$$

Thus, by part a),

$$E[f(W_{t+h}, Y_{t+h})|\mathcal{F}_{t}^{W}] = \int_{\mathbb{R}^{2}} f(x) K_{h}((W_{t}, Y_{t}), dx),$$

i.e., (W, Y) is a Markov process with transition semigroup $(K_h)_{h>0}$ given by

$$K_h((w,y),\cdot) = \mathcal{N}\left(\begin{pmatrix} w\\ y+hw \end{pmatrix}, \begin{pmatrix} h & h^2/2\\ h^2/2 & h^3/3 \end{pmatrix}\right), \quad h \ge 0.$$

(c) For the sake of contradiction, suppose that Y is Markov. Since this is a distributional property, we may assume that W is realised on the canonical space for Brownian motion. Then, for any $t, h \ge 0$,

$$E[Y_{t+h}|\mathcal{F}_t^W] = E\left[Y_t + hW_t + \int_t^{t+h} (W_s - W_t) \, ds \,\middle|\, \mathcal{F}_t^W\right] = Y_t + hW_t \quad P\text{-a.s.},$$

where we use Fubini's theorem for the \mathcal{F}_t^W -independent integral part. The Markov property then yields that W_t is $\sigma(Y_t)^P$ -measurable, where $\sigma(Y_t)^P$ denotes the (P, \mathcal{F}) -completion of $\sigma(Y_t)$. Consider e.g. t = 1. This implies that we can find $\Gamma \in \mathcal{B}(\mathbb{R})$ such that $1_{\{W_1 < 0\}} = 1_{\{Y_1 \in \Gamma\}} P$ a.s.. From **a**), we deduce that (W_1, Y_1) is multivariate normal distributed. Thus, because $W_1 \neq Y_1$ we have that $0 < \mathbb{P}(W_1 \ge 0, Y_1 \in \Gamma) = \mathbb{P}(W_1 \ge 0, W_1 < 0)$ which gives a contradiction.

Exercise 5.3

(a) Prove that *P*-almost all Brownian paths are nowhere on [0, 1] Hölder-continuous of order α , for any $\alpha > \frac{1}{2}$.

Hint: Take any $M \in \mathbb{N}$ satisfying $M(\alpha - \frac{1}{2}) > 1$ and show that the set $\{B_{\cdot}(\omega) \text{ is } \alpha\text{-H\"older}$ at some $s \in [0,1]\}$ is contained in the set $\bigcup_{C \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} \bigcup_{k=0,\dots,n-1} \bigcap_{j=1}^{M} \left\{ |B_{\frac{k+j}{n}}(\omega) - B_{\frac{k+j-1}{n}}(\omega)| \le C \frac{1}{n^{\alpha}} \right\}.$

(b) The Kolmogorov-Čentsov theorem states that a process X on [0,T] satisfying

 $E\big[|X_t-X_s|^\alpha\big] \leq C\,|t-s|^{1+\beta}, \quad s,t\in[0,T],$

where $\alpha, \beta, C > 0$, has a version which is locally Hölder-continuous of order γ for all $\gamma < \beta/\alpha$. Use this to deduce that Brownian motion has for every $\gamma < 1/2$ a version which is locally Hölder-continuous of order γ .

Remark: One can also show that the Brownian paths are *not* Hölder-continuous of order 1/2. The exact modulus of continuity was found by P. Lévy.

Solution 5.3

(a) Take any $\alpha > \frac{1}{2}$ and let $M \in \mathbb{N}$ satisfying $M(\alpha - \frac{1}{2}) > 1$. If $B_{\cdot}(\omega)$ is Hölder-continuous of order α at the point $s \in [0, 1]$, there exists a constant C so that $|B_t(\omega) - B_s(\omega)| \le C|t - s|^{\alpha}$ for t near s. Then $|B_{\frac{k}{n}}(\omega) - B_{\frac{k-1}{n}}(\omega)| \le Cn^{-\alpha}$ for all large enough n, for $\frac{k}{n}$ near s and M successive k's. The set $\{B_{\cdot}(\omega) \text{ is } \alpha\text{-Hölder at some } s \in [0,1]\}$ is therefore contained in

$$\bigcup_{C \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} \bigcup_{k=0,\dots,n-1} \bigcap_{j=1}^{M} \left\{ |B_{\frac{k+j}{n}}(\omega) - B_{\frac{k+j-1}{n}}(\omega)| \le C \frac{1}{n^{\alpha}} \right\}; \qquad (*)$$

We show that this is a nullset. As the above Brownian increments are iid ~ $N(0, \frac{1}{n})$, we have, with $Z \sim N(0, 1)$, as $P[|Z| \le \varepsilon] \le \varepsilon$ for any $\varepsilon \ge 0$, that

$$P\left[\bigcap_{i=1}^{M}\left\{|B_{\frac{k+j}{n}}(\omega) - B_{\frac{k+j-1}{n}}(\omega)| \le C\frac{1}{n^{\alpha}}\right\}\right] = \left(P\left[|Z| \le \frac{C}{n^{\alpha-1/2}}\right]\right)^{M} \le C^{M} n^{-M(\alpha-\frac{1}{2})}.$$

$$(2)$$

Now, we have

$$D_m := \bigcap_{n \ge m} \bigcup_{k=0,\dots,n-1} \bigcap_{j=1}^M \left\{ |B_{\frac{k+j}{n}}(\omega) - B_{\frac{k+j-1}{n}}(\omega)| \le C \frac{1}{n^{\alpha}} \right\}$$
$$\subseteq \bigcup_{k=0,\dots,n-1} \bigcap_{j=1}^M \left\{ |B_{\frac{k+j}{n}}(\omega) - B_{\frac{k+j-1}{n}}(\omega)| \le C \frac{1}{n^{\alpha}} \right\} \quad \text{for each } n \ge m$$

and therefore, due to (2), as $M(\alpha - \frac{1}{2}) > 1$, we get

$$P[D_m] \leq \limsup_{n \to \infty} P\left[\bigcup_{k=0,\dots,n-1} \bigcap_{j=1}^M \left\{ |B_{\frac{k+j}{n}}(\omega) - B_{\frac{k+j-1}{n}}(\omega)| \leq C \frac{1}{n^{\alpha}} \right\} \right]$$
$$\leq \limsup_{n \to \infty} n C^M n^{-M(\alpha - \frac{1}{2})}$$
$$= 0.$$

Therefore, being a countable union of nullsets, P[(*)] = 0.

Updated: April 3, 2017

(b) Let $Y_{\sigma} \sim \mathcal{N}(0, \sigma^2)$ for any $\sigma \geq 0$. We note that $E[Y_{\sigma}^m] = C\sigma^m$, where $C = E[Y_1^m]$. Thus

$$E[|B_t - B_s|^{2n}] = C_n |t - s|^n \quad \text{for all } n.$$

Writing $\alpha_n := 2n$ and $\beta_n := n - 1$ yields that $\frac{\beta_n}{\alpha_n} < \frac{1}{2}$ for any $n \in \mathbb{N}$. Moreover, $\frac{\beta_n}{\alpha_n}$ converges to 1/2. Thus, we get the result applying the Kolmogorov-Čentsov theorem.

Remark: In fact, $E[Y_{\sigma}^{n}] = (n-1)!! \sigma^{n}$ for n even and 0 otherwise, where n!! denotes the double factorial, that is the product of every odd number from n to 1.