Brownian Motion and Stochastic Calculus

Exercise sheet 5

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than March 31th

Exercise 5.1 Let $\left(W_{t}\right)_{t \geq 0}$ be a Brownian motion. Moreover, let \mathbb{F}^{0} be the (raw) filtration generated by W and \mathbb{F} its right-continuous modification. Let τ be an \mathbb{F}-stopping time with $\tau<\infty P$-a.s. and $\widetilde{W} .:=W_{\tau+} .-W_{\tau}$. Prove that \widetilde{W} is independent of \mathcal{F}_{τ}.
Hint: Use the monotone class theorem and approximate τ from above as on page 46 of the script.
Solution 5.1 We have to prove the independence of the σ-fields $\sigma\left(\widetilde{W}_{t} ; t \geq 0\right)$ and \mathcal{F}_{τ}. By Dynkin's theorem (and since $\widetilde{W}_{0}=0$ P-a.s.), it is enough to prove the independence of \mathcal{F}_{τ} and the family \mathcal{Z} of cylinder sets

$$
\begin{aligned}
\mathcal{Z}=\{ & \left\{\widetilde{W}_{t_{1}} \in A_{1}, \widetilde{W}_{t_{2}}-\widetilde{W}_{t_{1}} \in A_{2}, \ldots, \widetilde{W}_{t_{n}}-\widetilde{W}_{t_{n-1}} \in A_{n}\right\} \\
& \left.n \in \mathbb{N}, 0 \leq t_{1} \leq \ldots \leq t_{n}, A_{1}, \ldots A_{n} \in \mathcal{B}(\mathbb{R})\right\}
\end{aligned}
$$

as Z is a π-system generating $\sigma\left(\widetilde{W}_{t} ; t \geq 0\right)$. As usual, approximate τ with the sequence of stopping times $\tau_{m}=\sum_{k \geq 0} \frac{k+1}{2^{m}} \mathbf{1}_{\left\{\frac{k}{2^{m}} \leq \tau<\frac{k+1}{2^{m}}\right\}}$, and define the processes $\widetilde{W}^{m}=W_{\tau_{m}+.}-W_{\tau_{m}}$. Take $A \in \mathcal{F}_{\tau}$ and $f_{1}, \ldots f_{n}$ bounded and continuous on \mathbb{R}. As τ_{m} only takes a countable number of different values, we get for $t_{0}=0$

$$
\begin{aligned}
E & {\left[\mathbf{1}_{A} \prod_{i=1}^{n} f_{i}\left(\widetilde{W}_{t_{i}}^{m}-\widetilde{W}_{t_{i-1}}^{m}\right)\right] } \\
& =\sum_{k \geq 0} E\left[\mathbf{1}_{\left\{\frac{k}{2^{m}} \leq \tau<\frac{k+1}{2^{m}}\right\}} \mathbf{1}_{A} \prod_{i=1}^{n} f_{i}\left(W_{\frac{k+1}{2^{m}}+t_{i}}-W_{\frac{k+1}{2^{m}}+t_{i-1}}\right)\right] \\
& =\sum_{k \geq 0} E\left[\prod_{i=1}^{n} f_{i}\left(W_{\frac{k+1}{2^{m}}+t_{i}}-W_{\frac{k+1}{2^{m}}+t_{i-1}}\right)\right] P\left[\left\{\frac{k}{2^{m}} \leq \tau<\frac{k+1}{2^{m}}\right\} \cap A\right]
\end{aligned}
$$

since $\left\{\frac{k}{2^{m}} \leq \tau<\frac{k+1}{2^{m}}\right\} \cap A$ is in $\mathcal{F}_{\frac{k+1}{2^{m}}}$ and $W_{\frac{k+1}{2^{m}}+\text {. }}-W_{\frac{k+1}{2^{m}}}$ is independent of $\mathcal{F}_{\frac{k+1}{2^{m}}}$. By the stationarity of the Brownian increments, for each $n \in \mathbb{N}$ and $0 \leq t_{0} \leq \ldots \leq t_{n}<\infty$ we have for each $h>0$ that $W_{t_{j}+h}-W_{t_{j-1}+h} \stackrel{(d)}{=} W_{t_{j}}-W_{t_{j-1}}$ for $j=1, \ldots, n$. So we get that for each $k \in \mathbb{N}_{0}$

$$
E\left[\prod_{i=1}^{n} f_{i}\left(W_{\frac{k+1}{2^{m}}+t_{i}}-W_{\frac{k+1}{2^{m}}+t_{i-1}}\right)\right]=E\left[\prod_{i=1}^{n} f_{i}\left(W_{t_{i}}-W_{t_{i-1}}\right)\right]
$$

Therefore with the same arguments as above for $A=\Omega$ that

$$
E\left[\prod_{i=1}^{n} f_{i}\left(W_{\tau_{m}+t_{i}}-W_{\tau_{m}+t_{i-1}}\right)\right]=E\left[\prod_{i=1}^{n} f_{i}\left(W_{t_{i}}-W_{t_{i-1}}\right)\right]
$$

This implies together with the result above that

$$
E\left[\mathbf{1}_{A} \prod_{i=1}^{n} f_{i}\left(\widetilde{W}_{t_{i}}^{m}-\widetilde{W}_{t_{i-1}}^{m}\right)\right]=E\left[\prod_{i=1}^{n} f_{i}\left(W_{t_{i}}-W_{t_{i-1}}\right)\right] P[A]
$$

As $m \rightarrow \infty, \tau_{m} \searrow \tau$ and $f_{j}\left(W_{\tau_{m}+t_{j}}-W_{\tau_{m}+t_{j-1}}\right) \rightarrow f_{j}\left(W_{\tau+t_{j}}-W_{\tau+t_{j-1}}\right) P$-a.s. for $j=1, \ldots, n$ by the P-a.s. right-continuity of Brownian paths and the continuity of f_{j}. Therefore we get with Lebesgue's dominated convergence theorem

$$
\begin{equation*}
E\left[\mathbf{1}_{A} \prod_{i=1}^{n} f_{i}\left(\widetilde{W}_{t_{i}}-\widetilde{W}_{t_{i-1}}\right)\right]=E\left[\prod_{i=1}^{n} f_{i}\left(\widetilde{W}_{t_{i}}-\widetilde{W}_{t_{i-1}}\right)\right] P[A] \tag{1}
\end{equation*}
$$

To extend (1) to measurable and bounded functions f_{1}, \ldots, f_{n} we extend it successively for each f_{j} with $j \in\{1, \ldots, n\}$ by applying the monotone class theorem. Fix $j \in\{1, \ldots, n\}$ and assume that (1) holds for f_{1}, \ldots, f_{j-1} measurable and bounded and $f_{j}, \ldots, f_{n} \in C_{b}(\mathbb{R})$. Set $\mathcal{M}=C_{b}(\mathbb{R})$ and

$$
\begin{gathered}
\mathcal{H}=\left\{f \text { measurable and bounded } \mid(1) \text { holds for } f_{1}, \ldots, f_{j-1}\right. \text { measurable and bounded, } \\
\left.\qquad f_{j}=f, \text { and } f_{j+1}, \ldots, f_{n} \in C_{b}(\mathbb{R})\right\}
\end{gathered}
$$

As $C_{b}(\mathbb{R})$ is a vector lattice that generates $\mathcal{B}(\mathbb{R})$ (see script "Wahrscheinlichkeitstheorie", Beispiel V.1.1) (1) follows for f_{j} measurable and bounded by noting that \mathcal{H} is a real vector space of bounded real-valued functions containing \mathcal{M} and 1 and is closed under bounded monotone convergence. By plugging in indicator functions of Borel sets we finally get the independence of \widetilde{W} of \mathcal{F}_{τ}.

Exercise 5.2 Let $W=\left(W_{t}\right)_{t \geq 0}$ be a Brownian motion in \mathbb{R} and define the integrated Brownian motion $Y=\left(Y_{t}\right)_{t \geq 0}$ by $Y_{t}=\int_{0}^{t} W_{s} d s$. Moreover, let $\mathbb{F}^{W}:=\left(\mathcal{F}_{t}^{W}\right)_{t \geq 0}$ be the raw filtration generated by W.
(a) For each $h \geq 0$, show that the pair $\left(W_{h}, Y_{h}\right)$ has a two-dimensional normal distribution with mean zero and covariance matrix given by

$$
\left(\begin{array}{cc}
h & h^{2} / 2 \\
h^{2} / 2 & h^{3} / 3
\end{array}\right)
$$

Hint: First, show that $\left(W_{h}, Y_{h}\right)$ has a two-dimensional normal distribution by approximating Y_{h} by Riemann sums and using Exercise 3-3. Second, use Fubini's theorem to compute the covariance matrix.
(b) Show that the pair (W, Y) is a (homogeneous) Markov process with state space \mathbb{R}^{2}, filtration \mathbb{F}^{W} and transition semigroup $\left(K_{h}\right)_{h \geq 0}$ given by

$$
K_{h}((w, y), \cdot)=\mathcal{N}\left(\binom{w}{y+h w},\left(\begin{array}{cc}
h & h^{2} / 2 \\
h^{2} / 2 & h^{3} / 3
\end{array}\right)\right), \quad h \geq 0
$$

(c) Show that Y alone is not a Markov process with respect to \mathbb{F}^{W}.

Solution 5.2

(a) Fix $h \geq 0$. Write $\left(W_{h}, Y_{h}\right)=\lim _{n \rightarrow \infty}\left(W_{h}, \frac{h}{n} \sum_{i=0}^{n-1} W_{\frac{i}{n} h}\right)=: \lim _{n \rightarrow \infty}\left(W_{h}, Y_{h}^{n}\right)$. For each n, the random pair $\left(W_{h}, \frac{h}{n} \sum_{i=0}^{n-1} W_{\frac{i}{n} h}\right)$ is a linear transformation of the Gaussian random vector $\left(W_{\frac{i}{n} h}\right)_{i=0, \ldots, n}$ and as such Gaussian itself. To show that $\left(W_{h}, Y_{h}\right)$ is a Gaussian vector, we need to show that for any scalar $a_{1}, a_{2} \in \mathbb{R}$, we have that $a_{1} W_{h}+a_{2} Y_{h}$ is normal distributed. Fix $a_{1}, a_{2} \in \mathbb{R}$. It is clear that $a_{1} W_{h}+a_{2} Y_{h}=\lim _{n \rightarrow \infty} a_{1} W_{h}+a_{2} Y_{h}^{n}$ pointwise, in particular in distribution. By Exercise 3-3, we know that the limit (in distribution, say) of Gaussian random variables is Gaussian. Thus, we conclude that $a_{1} W_{h}+a_{2} Y_{h}$ is a Gaussian random variable, and hence $\left(W_{h}, Y_{h}\right)$ is a Gaussian vector. Thus, it only remains to compute mean vector and covariance matrix of $\left(W_{h}, Y_{h}\right)$.
Clearly, $E\left[W_{h}\right]=0$ and using Fubini's theorem, we see that $E\left[Y_{h}\right]=0$ as well. Next, $\operatorname{Var}\left(W_{h}\right)=h$, and using Fubini's theorem, we get

$$
\begin{aligned}
\operatorname{Var}\left[Y_{h}\right] & =E\left[\left(\int_{0}^{h} W_{r} d r\right)^{2}\right]=E\left[\int_{0}^{h} W_{r} d r \int_{0}^{h} W_{s} d s\right]=E\left[\int_{0}^{h} \int_{0}^{h} W_{r} W_{s} d r d s\right] \\
& =\int_{0}^{h} \int_{0}^{h} E\left[W_{r} W_{s}\right] d r d s=\int_{0}^{h} \int_{0}^{h} r \wedge s d r d s=\int_{0}^{h}\left(\int_{0}^{s} r d r+\int_{s}^{h} s d r\right) d s \\
& =\int_{0}^{h}\left(\frac{s^{2}}{2}+s(h-s)\right) d s=-\frac{h^{3}}{6}+\frac{h^{3}}{2}=\frac{h^{3}}{3}
\end{aligned}
$$

Finally, again using Fubini's theorem,

$$
\operatorname{Cov}\left(W_{h}, Y_{h}\right)=E\left[W_{h} \int_{0}^{h} W_{s} d s\right]=\int_{0}^{h} E\left[W_{h} W_{s}\right] d s=\int_{0}^{h} s d s=\frac{h^{2}}{2}
$$

(b) Let $\left(\mathcal{F}_{t}^{W}\right)_{t \geq 0}$ denote the (raw) filtration generated by $W, f: \mathbb{R}^{2} \rightarrow[0, \infty)$ a bounded Borel function, and $t \geq 0, h>0$. By construction, Y is $\left(\mathcal{F}_{t}^{W}\right)$-adapted. Moreover, writing
$W_{t+h}=W_{t}+\left(W_{t+h}-W_{t}\right), Y_{t+h}=Y_{t}+\int_{t}^{t+h} W_{s} d s=Y_{t}+h W_{t}+\int_{t}^{t+h}\left(W_{s}-W_{t}\right) d s$, and using the fact that $\left(W_{t+s}-W_{t}\right)_{s \geq 0}$ is independent of \mathcal{F}_{t}^{W}, we obtain

$$
E\left[f\left(W_{t+h}, Y_{t+h}\right) \mid \mathcal{F}_{t}^{W}\right]=\left.E\left[f\left(w+\left(W_{t+h}-W_{t}\right), y+h w+\int_{t}^{t+h}\left(W_{s}-W_{t}\right) d s\right)\right]\right|_{w=W_{t}, y=Y_{t}}
$$

By translation invariance of Brownian motion,

$$
\left(W_{t+h}-W_{t}, \int_{t}^{t+h}\left(W_{s}-W_{t}\right) d s\right) \stackrel{d}{=}\left(W_{h}, \int_{0}^{h} W_{s} d s\right)=\left(W_{h}, Y_{h}\right)
$$

Thus, by part a),

$$
E\left[f\left(W_{t+h}, Y_{t+h}\right) \mid \mathcal{F}_{t}^{W}\right]=\int_{\mathbb{R}^{2}} f(x) K_{h}\left(\left(W_{t}, Y_{t}\right), d x\right)
$$

i.e., (W, Y) is a Markov process with transition semigroup $\left(K_{h}\right)_{h \geq 0}$ given by

$$
K_{h}((w, y), \cdot)=\mathcal{N}\left(\binom{w}{y+h w},\left(\begin{array}{cc}
h & h^{2} / 2 \\
h^{2} / 2 & h^{3} / 3
\end{array}\right)\right), \quad h \geq 0
$$

(c) For the sake of contradiction, suppose that Y is Markov. Since this is a distributional property, we may assume that W is realised on the canonical space for Brownian motion. Then, for any $t, h \geq 0$,

$$
E\left[Y_{t+h} \mid \mathcal{F}_{t}^{W}\right]=E\left[Y_{t}+h W_{t}+\int_{t}^{t+h}\left(W_{s}-W_{t}\right) d s \mid \mathcal{F}_{t}^{W}\right]=Y_{t}+h W_{t} \quad P \text {-a.s. }
$$

where we use Fubini's theorem for the \mathcal{F}_{t}^{W}-independent integral part. The Markov property then yields that W_{t} is $\sigma\left(Y_{t}\right)^{P}$-measurable, where $\sigma\left(Y_{t}\right)^{P}$ denotes the (P, \mathcal{F})-completion of $\sigma\left(Y_{t}\right)$. Consider e.g. $t=1$. This implies that we can find $\Gamma \in \mathcal{B}(\mathbb{R})$ such that $1_{\left\{W_{1}<0\right\}}=1_{\left\{Y_{1} \in \Gamma\right\}} P-$ a.s.. From a), we deduce that $\left(W_{1}, Y_{1}\right)$ is multivariate normal distributed. Thus, because $W_{1} \neq Y_{1}$ we have that $0<\mathbb{P}\left(W_{1} \geq 0, Y_{1} \in \Gamma\right)=\mathbb{P}\left(W_{1} \geq 0, W_{1}<0\right)$ which gives a contradiction.

Exercise 5.3

(a) Prove that P-almost all Brownian paths are nowhere on $[0,1]$ Hölder-continuous of order α, for any $\alpha>\frac{1}{2}$.
Hint: Take any $M \in \mathbb{N}$ satisfying $M\left(\alpha-\frac{1}{2}\right)>1$ and show that the set
$\{B .(\omega)$ is α-Hölder at some $s \in[0,1]\}$ is contained in the set $\bigcup_{C \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \bigcup_{k=0, \ldots, n-1} \bigcap_{j=1}^{M}\left\{\left|B_{\frac{k+j}{n}}(\omega)-B_{\frac{k+j-1}{n}}(\omega)\right| \leq C \frac{1}{n^{\alpha}}\right\}$.
(b) The Kolmogorov-Čentsov theorem states that a process X on $[0, T]$ satisfying

$$
E\left[\left|X_{t}-X_{s}\right|^{\alpha}\right] \leq C|t-s|^{1+\beta}, \quad s, t \in[0, T]
$$

where $\alpha, \beta, C>0$, has a version which is locally Hölder-continuous of order γ for all $\gamma<\beta / \alpha$. Use this to deduce that Brownian motion has for every $\gamma<1 / 2$ a version which is locally Hölder-continuous of order γ.
Remark: One can also show that the Brownian paths are not Hölder-continuous of order $1 / 2$. The exact modulus of continuity was found by P. Lévy.

Solution 5.3

(a) Take any $\alpha>\frac{1}{2}$ and let $M \in \mathbb{N}$ satisfying $M\left(\alpha-\frac{1}{2}\right)>1$. If B. (ω) is Hölder-continuous of order α at the point $s \in[0,1]$, there exists a constant C so that $\left|B_{t}(\omega)-B_{s}(\omega)\right| \leq C|t-s|^{\alpha}$ for t near s. Then $\left|B_{\frac{k}{n}}(\omega)-B_{\frac{k-1}{n}}(\omega)\right| \leq C n^{-\alpha}$ for all large enough n, for $\frac{k}{n}$ near s and M successive k 's. The set $\{B .(\omega)$ is α-Hölder at some $s \in[0,1]\}$ is therefore contained in

$$
\begin{equation*}
\bigcup_{C \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \bigcup_{k=0, \ldots, n-1} \bigcap_{j=1}^{M}\left\{\left|B_{\frac{k+j}{n}}(\omega)-B_{\frac{k+j-1}{n}}(\omega)\right| \leq C \frac{1}{n^{\alpha}}\right\} \tag{*}
\end{equation*}
$$

We show that this is a nullset. As the above Brownian increments are iid $\sim N\left(0, \frac{1}{n}\right)$, we have, with $Z \sim N(0,1)$, as $P[|Z| \leq \varepsilon] \leq \varepsilon$ for any $\varepsilon \geq 0$, that

$$
\begin{equation*}
P\left[\bigcap_{i=1}^{M}\left\{\left|B_{\frac{k+j}{n}}(\omega)-B_{\frac{k+j-1}{n}}(\omega)\right| \leq C \frac{1}{n^{\alpha}}\right\}\right]=\left(P\left[|Z| \leq \frac{C}{n^{\alpha-1 / 2}}\right]\right)^{M} \leq C^{M} n^{-M\left(\alpha-\frac{1}{2}\right)} \tag{2}
\end{equation*}
$$

Now, we have

$$
\begin{aligned}
D_{m}: & =\bigcap_{n \geq m} \bigcup_{k=0, \ldots, n-1} \bigcap_{j=1}^{M}\left\{\left|B_{\frac{k+j}{n}}(\omega)-B_{\frac{k+j-1}{n}}(\omega)\right| \leq C \frac{1}{n^{\alpha}}\right\} \\
& \subseteq \bigcup_{k=0, \ldots, n-1} \bigcap_{j=1}^{M}\left\{\left|B_{\frac{k+j}{n}}(\omega)-B_{\frac{k+j-1}{n}}(\omega)\right| \leq C \frac{1}{n^{\alpha}}\right\} \quad \text { for each } n \geq m
\end{aligned}
$$

and therefore, due to (2), as $M\left(\alpha-\frac{1}{2}\right)>1$, we get

$$
\begin{aligned}
P\left[D_{m}\right] & \leq \limsup _{n \rightarrow \infty} P\left[\bigcup_{k=0, \ldots, n-1} \bigcap_{j=1}^{M}\left\{\left|B_{\frac{k+j}{n}}(\omega)-B_{\frac{k+j-1}{n}}(\omega)\right| \leq C \frac{1}{n^{\alpha}}\right\}\right] \\
& \leq \limsup _{n \rightarrow \infty} n C^{M} n^{-M\left(\alpha-\frac{1}{2}\right)} \\
& =0
\end{aligned}
$$

Therefore, being a countable union of nullsets, $P[(*)]=0$.
(b) Let $Y_{\sigma} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ for any $\sigma \geq 0$. We note that $E\left[Y_{\sigma}^{m}\right]=C \sigma^{m}$, where $C=E\left[Y_{1}^{m}\right]$. Thus

$$
E\left[\left|B_{t}-B_{s}\right|^{2 n}\right]=C_{n}|t-s|^{n} \quad \text { for all } n
$$

Writing $\alpha_{n}:=2 n$ and $\beta_{n}:=n-1$ yields that $\frac{\beta_{n}}{\alpha_{n}}<\frac{1}{2}$ for any $n \in \mathbb{N}$. Moreover, $\frac{\beta_{n}}{\alpha_{n}}$ converges to $1 / 2$. Thus, we get the result applying the Kolmogorov-Čentsov theorem.

Remark: In fact, $E\left[Y_{\sigma}^{n}\right]=(n-1)!!\sigma^{n}$ for n even and 0 otherwise, where $n!$! denotes the double factorial, that is the product of every odd number from n to 1.

