Brownian Motion and Stochastic Calculus

Exercise sheet 6

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than

 April 7th
Exercise 6.1

Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and define the process $\left(M_{t}\right)_{t \geq 0}$ by $M_{t}=\sup _{0 \leq s \leq t} B_{s}$.
Show that for any fixed $t \geq 0$

$$
\begin{equation*}
M_{t}-B_{t} \stackrel{L a w}{=}\left|B_{t}\right| \stackrel{L a w}{=} M_{t} \tag{1}
\end{equation*}
$$

That is, show that the random variables have the same density functions.
Solution 6.1 For any $g: \mathbb{R} \rightarrow \mathbb{R}$ bounded Borel measurable function, we know that

$$
\begin{equation*}
E\left[g\left(\left|B_{t}\right|\right)\right]=\int_{-\infty}^{\infty} g(|x|) \frac{1}{\sqrt{2 \pi t}} e^{-x^{2} /(2 t)} d x=\int_{0}^{\infty} g(x) \sqrt{\frac{2}{\pi t}} e^{-x^{2} /(2 t)} d x \tag{2}
\end{equation*}
$$

Thus, we see that the probability density function of $\left|B_{t}\right|$ on \mathbb{R} is given by the function

$$
x \mapsto \mathbf{1}_{x \geq 0} \sqrt{\frac{2}{\pi t}} e^{-x^{2} /(2 t)}
$$

From Corollary 2.55 of the script, we know that the probability density function of the joint law of $\left(B_{t}, M_{t}\right)$ where $M_{t}:=\sup _{0 \leq s \leq t} B_{s}$ is given by the function

$$
\begin{equation*}
(x, y) \mapsto \frac{2(2 y-x)}{\sqrt{2 \pi t^{3}}} e^{-(2 y-x)^{2} /(2 t)} \mathbf{1}_{\{y \geq 0, x \leq y\}} \tag{3}
\end{equation*}
$$

Take any $g: \mathbb{R} \rightarrow \mathbb{R}$ bounded Borel measurable function. We deduce from (3) that

$$
E\left[g\left(M_{t}-B_{t}\right)\right]=\iint_{0 \leq y, 0 \leq y-x} g(y-x) \frac{2(2 y-x)}{\sqrt{2 \pi t^{3}}} e^{-(2 y-x)^{2} /(2 t)} d x d y
$$

By a change of variable $u:=y-x v:=y$ we get that

$$
\begin{equation*}
E\left[g\left(M_{t}-B_{t}\right)\right]=\iint_{0 \leq u, 0 \leq v} g(u) \sqrt{\frac{2}{\pi t^{3}}}(u+v) e^{-(u+v)^{2} /(2 t)} d u d v \tag{4}
\end{equation*}
$$

By another change of variable $n:=u$ and $m:=u+v$ and as $\int x e^{-c x^{2} / 2} d x=-\frac{e^{-c x^{2} / 2}}{c}$, we get that

$$
\begin{align*}
E\left[g\left(M_{t}-B_{t}\right)\right] & =\int_{0}^{\infty} g(n) \sqrt{\frac{2}{\pi t^{3}}} \int_{n}^{\infty} m e^{-m^{2} /(2 t)} d m d n \\
& =\int_{0}^{\infty} g(n) \sqrt{\frac{2}{\pi t}} e^{-n^{2} /(2 t)} d n \tag{5}
\end{align*}
$$

Comparing (2) with (5) yields that $M_{t}-B_{t} \stackrel{\text { Law }}{=}\left|B_{t}\right|$.
Now, from (3), we deduce for any $g: \mathbb{R} \rightarrow \mathbb{R}$ bounded Borel measurable function that

$$
E\left[g\left(M_{t}\right)\right]=\iint_{0 \leq y, 0 \leq y-x} g(y) \frac{2(2 y-x)}{\sqrt{2 \pi t^{3}}} e^{-(2 y-x)^{2} /(2 t)} d x d y
$$

By a change of variable $u:=y$ and $v:=y-x$ we get that

$$
\begin{equation*}
E\left[g\left(M_{t}\right)\right]=\iint_{0 \leq u, 0 \leq v} g(u) \sqrt{\frac{2}{\pi t^{3}}}(u+v) e^{-(u+v)^{2} /(2 t)} d u d v \tag{6}
\end{equation*}
$$

Comparing (4) with (6) yields $M_{t}-B_{t} \stackrel{\text { Law }}{=} M_{t}$.

Exercise 6.2 Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and denote by $\mathcal{G}_{t}:=\sigma\left(B_{u}, u \leq t\right), t \geq 0$. Define $\widetilde{R}_{0} f(x)=f(x)$ and

$$
\widetilde{R}_{t} f(x)=\frac{1}{\sqrt{2 \pi t}} \int_{0}^{\infty} f(y)\left[\exp \left(-\frac{1}{2 t}(y-x)^{2}\right)+\exp \left(-\frac{1}{2 t}(y+x)^{2}\right)\right] d y, \quad t>0
$$

Let us consider the process $\left(X_{t}\right)_{t \geq 0}$ by $X_{t}:=\left|B_{t}\right|$. Show that

$$
E\left[f\left(X_{t+h}\right) \mid \mathcal{G}_{t}\right]=\widetilde{R}_{h} f\left(X_{t}\right) \quad P \text {-a.s. for } f \in b \mathcal{B}(\mathbb{R}) \text { and } t, h \geq 0
$$

Solution 6.2 Fix any $t, h \geq 0$ and $f \in b \mathcal{B}(\mathbb{R})$. The case where $h=0$ is trivial, therefore, let $h>0$. From the lecture (cf. Example 2.23 in Section 3.2 in the lecture notes), we know that Brownian motion is a Markov process with transition semigroup given by $R_{0} \tilde{f}(x)=\tilde{f}(x)$ and

$$
R_{h} \tilde{f}(x)=\frac{1}{\sqrt{2 \pi h}} \int_{\mathbb{R}} \tilde{f}(y) \exp \left(-\frac{(y-x)^{2}}{2 h}\right) d y \quad \text { when } \quad h>0, \quad \tilde{f} \in b \mathcal{B}(\mathbb{R})
$$

Therefore, we get for $\tilde{f}(x):=f(|x|) \in b \mathcal{B}(\mathbb{R})$ that

$$
\begin{align*}
E\left[f\left(X_{t+h}\right) \mid \mathcal{G}_{t}\right]= & R_{h} \tilde{f}\left(B_{t}\right) \\
= & \frac{1}{\sqrt{2 \pi h}} \int_{\mathbb{R}} \tilde{f}(y) \exp \left(-\frac{\left(y-B_{t}\right)^{2}}{2 h}\right) d y \\
= & \frac{1}{\sqrt{2 \pi h}} \int_{[0, \infty)} f(y) \exp \left(-\frac{\left(y-B_{t}\right)^{2}}{2 h}\right) d y \\
& +\frac{1}{\sqrt{2 \pi h}} \int_{(-\infty, 0)} f(-y) \exp \left(-\frac{\left(y-B_{t}\right)^{2}}{2 h}\right) d y \tag{7}
\end{align*}
$$

By a change of variables and by observing that $\{0\}$ is a null set, we deduce from (7) that

$$
\begin{align*}
E\left[f\left(X_{t+h}\right) \mid \mathcal{G}_{t}\right]= & \frac{1}{\sqrt{2 \pi h}} \int_{[0, \infty)} f(y) \exp \left(-\frac{\left(y-B_{t}\right)^{2}}{2 h}\right) d y \\
& +\frac{1}{\sqrt{2 \pi h}} \int_{[0, \infty)} f(y) \exp \left(-\frac{\left(y+B_{t}\right)^{2}}{2 h}\right) d y \tag{8}\\
= & \tilde{R}_{h} f\left(B_{t}\right)
\end{align*}
$$

By symmetry of the expression in (8), we see that $E\left[f\left(X_{t+h}\right) \mid \mathcal{G}_{t}\right]=\tilde{R}_{h} f\left(-B_{t}\right)$ and thus

$$
E\left[f\left(X_{t+h}\right) \mid \mathcal{G}_{t}\right]=\tilde{R}_{h} f\left(X_{t}\right)
$$

Exercise 6.3 Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion. For any $a>0$ consider the stopping times

$$
T_{a}:=\inf \left\{t>0 \mid B_{t} \geq a\right\}
$$

Show that the Laplace transform of T_{a} has value:

$$
E\left[\exp \left(-\mu T_{a}\right)\right]=\exp (-a \sqrt{2 \mu}), \quad \forall \mu>0
$$

and show that $P\left[T_{a}<\infty\right]=1$.
Hint: Consider the martingale $M_{t}^{\lambda}=\exp \left(\lambda B_{t}-\frac{\lambda^{2}}{2} t\right)$.
Solution 6.3 We know that for any $\lambda \in \mathbb{R}$, the process $M^{\lambda}:=\left(M_{t}^{\lambda}\right)_{t \geq 0}$ defined by

$$
M_{t}^{\lambda}=\exp \left(\lambda B_{t}-\frac{\lambda^{2}}{2} t\right)
$$

is a continuous \mathcal{F}_{t}-martingale, where we denote by $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ the filtration generated by B. Moreover, for any $n \in \mathbb{N}, T_{a} \wedge n$ is a bounded stopping time. Thus, applying the stopping theorem (i.e. Serie 6 Exercise 1) we get

$$
E\left[M_{T_{a} \wedge n}^{\lambda} \mid \mathcal{F}_{0}\right]=M_{0}^{\lambda}=1 \quad P \text {-a.s. }
$$

By taking expectations, we get that

$$
E\left[M_{T_{a} \wedge n}^{\lambda}\right]=1
$$

Now, on the event $\left\{T_{a}<\infty\right\}$ we have

$$
\exp \left(\lambda B_{T_{a} \wedge n}-\frac{\lambda^{2}}{2}\left(T_{a} \wedge n\right)\right) \xrightarrow{n \rightarrow \infty} \exp \left(\lambda B_{T_{a}}-\frac{\lambda^{2}}{2} T_{a}\right)=e^{\lambda a} \exp \left(-\frac{\lambda^{2}}{2} T_{a}\right)
$$

On the event $\left\{T_{a}=\infty\right\}$ we have $B_{t} \leq a$ for any $t \geq 0$ and thus we get for any $\lambda>0$ that

$$
\exp \left(\lambda B_{T_{a} \wedge n}-\frac{\lambda^{2}}{2}\left(T_{a} \wedge n\right)\right) \exp \left(\lambda B_{n}-\frac{\lambda^{2}}{2} n\right) \xrightarrow{n \rightarrow \infty} 0 .
$$

We conclude that for any $\lambda>0$

$$
\begin{equation*}
\exp \left(\lambda B_{T_{a} \wedge n}-\frac{\lambda^{2}}{2}\left(T_{a} \wedge n\right)\right) \xrightarrow{n \rightarrow \infty} e^{\lambda a} \exp \left(-\frac{\lambda^{2}}{2} T_{a}\right) \mathbf{1}_{\left\{T_{a}<\infty\right\}} \quad P \text {-a.s. } \tag{9}
\end{equation*}
$$

Observe that for any $n \in \mathbb{N}$ we have

$$
0 \leq \exp \left(\lambda B_{T_{a} \wedge n}-\frac{\lambda^{2}}{2}\left(T_{a} \wedge n\right)\right) \leq e^{\lambda a}
$$

Thus, we deduce from (9), by applying dominated convergence theorem, that for any $\lambda>0$

$$
1=E\left[M_{T_{a} \wedge n}^{\lambda}\right] \xrightarrow{n \rightarrow \infty} e^{\lambda a} E\left[\exp \left(-\frac{\lambda^{2}}{2} T_{a}\right) \mathbf{1}_{\left\{T_{a}<\infty\right\}}\right]
$$

and so, for any $\lambda>0$

$$
\begin{equation*}
e^{\lambda a} E\left[\exp \left(-\frac{\lambda^{2}}{2} T_{a}\right) \mathbf{1}_{\left\{T_{a}<\infty\right\}}\right]=1 \tag{10}
\end{equation*}
$$

Take any positive, decreasing sequence $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ converging to 0 . We deduce from (10) and the monotone convergence theorem that

$$
P\left[T_{a}<\infty\right]=\lim _{n \rightarrow \infty} e^{\lambda_{n} a} E\left[\exp \left(-\frac{\lambda_{n}^{2}}{2} T_{a}\right) \mathbf{1}_{\left\{T_{a}<\infty\right\}}\right]=1
$$

which proves the first part. Thus, as we now know that $P\left[T_{a}<\infty\right]=1$ we get from (10) that for any $\lambda>0$

$$
\begin{equation*}
e^{\lambda a} E\left[\exp \left(-\frac{\lambda^{2}}{2} T_{a}\right)\right]=1 \tag{11}
\end{equation*}
$$

Fix any $\mu>0$. For $\lambda:=\sqrt{2 \mu}$, (11) yields the desired result.

Exercise 6.4 Let $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ be a decreasing sequence of sub- σ-fields of \mathcal{F} (i.e. $\mathcal{F}_{n+1} \subseteq \mathcal{F}_{n} \subseteq \mathcal{F}, \forall n \in$ \mathbb{N}) and let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a backward submartingale, i.e. $E\left[\left|X_{n}\right|\right]<\infty, X_{n}$ is \mathcal{F}_{n}-measurable and $E\left[X_{n} \mid \mathcal{F}_{n+1}\right] \geq X_{n+1} P$-a.s. for every $n \in \mathbb{N}$.
(a) Show that for any $n \geq m, N, M>0$,

$$
E\left[-X_{n} \mathbf{1}_{\left\{-X_{n} \geq M\right\}}\right] \leq E\left[X_{m}\right]-E\left[X_{n}\right]+E\left[\left|X_{m}\right| \mathbf{1}_{\left\{-X_{m} \geq N\right\}}\right]+\frac{N}{M} E\left[X_{n}^{-}\right]
$$

(b) Show that $\lim _{n \rightarrow \infty} E\left[X_{n}\right]>-\infty$ implies that the sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ is uniformly integrable.

Hint: use a) to conclude that $\left(X_{n}^{-}\right)_{n \in \mathbb{N}}$ is uniformly integrable.

Solution 6.4

(a) For any $n \geq m, N, M>0$, by the backward submartingale property, using that the set $\left\{-X_{n}>M\right\} \in \mathcal{F}_{n}$, we obtain that

$$
\begin{aligned}
E\left[-X_{n} \mathbf{1}_{\left\{-X_{n} \geq M\right\}}\right]= & E\left[-X_{n}\right]-E\left[-X_{n} \mathbf{1}_{\left\{-X_{n}<M\right\}}\right] \\
\leq & E\left[-X_{n}\right]-E\left[-X_{m} \mathbf{1}_{\left\{-X_{n}<M\right\}}\right] \\
= & E\left[-X_{n}\right]-E\left[-X_{m}\right]+E\left[-X_{m} \mathbf{1}_{\left\{-X_{n} \geq M\right\}}\right] \\
= & E\left[X_{m}-X_{n}\right]+E\left[-X_{m} \mathbf{1}_{\left\{-X_{n} \geq M,-X_{m} \geq N\right\}}\right] \\
& +E\left[-X_{m} \mathbf{1}_{\left\{-X_{n} \geq M, 0<-X_{m}<N\right\}}\right]+E\left[-X_{m} \mathbf{1}_{\left\{-X_{n} \geq M,-X_{m} \leq 0\right\}}\right] \\
\leq & E\left[X_{m}-X_{n}\right]+E\left[-X_{m} \mathbf{1}_{\left\{-X_{n} \geq M,-X_{m} \geq N\right\}}\right]+E\left[-X_{m} \mathbf{1}_{\left\{-X_{n} \geq M, 0<-X_{m}<N\right\}}\right] \\
\leq & E\left[X_{m}\right]-E\left[X_{n}\right]+E\left[\left|X_{m}\right| \mathbf{1}_{\left\{-X_{m} \geq N\right\}}\right]+\frac{N}{M} E\left[-X_{n} \mathbf{1}_{\left\{-X_{n} \geq M\right\}}\right] \\
\leq & E\left[X_{m}\right]-E\left[X_{n}\right]+E\left[\left|X_{m}\right| \mathbf{1}_{\left\{-X_{m} \geq N\right\}}\right]+\frac{N}{M} E\left[-X_{n} \mathbf{1}_{\left\{-X_{n} \geq 0\right\}}\right] \\
= & E\left[X_{m}\right]-E\left[X_{n}\right]+E\left[\left|X_{m}\right| \mathbf{1}_{\left\{-X_{m} \geq N\right\}}\right]+\frac{N}{M} E\left[X_{n}^{-}\right] .
\end{aligned}
$$

(b) First, as $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a backward submartingale, we obtain that for any n

$$
X_{n}^{+}=X_{n}+X_{n}^{-} \leq E\left[X_{0} \mid \mathcal{F}_{n}\right]+X_{n}^{-}
$$

Thus, as $\left(E\left[X_{0} \mid \mathcal{F}_{n}\right]\right)_{n \in \mathbb{N}}$ is uniformly integrable, if we can show that $\left(X_{n}^{-}\right)_{n \in \mathbb{N}}$ is uniformly integrable, we can conclude that also $\left(X_{n}^{+}\right)_{n \in \mathbb{N}}$ is uniformly integrable which then implies that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is uniformly integrable. Now, $\left(X_{n}^{-}\right)_{n \in \mathbb{N}}$ being uniformly integrable is equivalent having that for any $\varepsilon>0$ we find $M \geq 0$ such that

$$
\sup _{n \in \mathbb{N}} E\left[-X_{n} \mathbf{1}_{\left\{-X_{n} \geq M\right\}}\right] \leq \varepsilon
$$

Fix any $\varepsilon>0$. Due to the assumption that $\lim _{n \rightarrow \infty} E\left[X_{n}\right]>-\infty$, we can find $m \in \mathbb{N}$ such that for any $n \geq m$

$$
E\left[X_{m}\right]-E\left[X_{n}\right] \leq \varepsilon / 4
$$

Since X_{n} is integrable for every $n \in \mathbb{N}$ we can find $M_{m} \geq 0$ such that for any $M \geq M_{m}$

$$
\max _{n<m} E\left[-X_{n} \mathbf{1}_{\left\{-X_{n} \geq M\right\}}\right] \leq \varepsilon / 4
$$

As

$$
\sup _{n \in \mathbb{N}} E\left[-X_{n} \mathbf{1}_{\left\{-X_{n} \geq M\right\}}\right] \leq \max _{n<m} E\left[-X_{n} \mathbf{1}_{\left\{-X_{n} \geq M\right\}}\right]+\sup _{n \geq m} E\left[-X_{n} \mathbf{1}_{\left\{-X_{n} \geq M\right\}}\right]
$$

it suffices to find $M \geq M_{m}$ such that

$$
\sup _{n \geq m} E\left[-X_{n} \mathbf{1}_{\left\{-X_{n} \geq M\right\}}\right] \leq 3 \varepsilon / 4
$$

We first observe that $\left(X_{n}^{+}\right)_{n \in \mathbb{N}}$ is also a backward submartingale. Indeed, due to Jensen's inequality, we obtain that

$$
E\left[X_{n}^{+} \mid \mathcal{F}_{n+1}\right] \geq E\left[X_{n} \mid \mathcal{F}_{n+1}\right]^{+} \geq X_{n+1}^{+}
$$

Now, we claim that $\sup _{n \in \mathbb{N}} E\left[X_{n}^{-}\right]<\infty$. Assume by contradiction that $\sup _{n \in \mathbb{N}} E\left[X_{n}^{-}\right]=\infty$. Then, we can find a subsequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ such that

$$
\lim _{k \rightarrow \infty} E\left[X_{n_{k}}^{-}\right]=\sup _{n \in \mathbb{N}} E\left[X_{n}^{-}\right]=\infty
$$

Using that $\left(X_{n}^{+}\right)_{n \in \mathbb{N}}$ is also a backward submartingale, we obtain for any k that

$$
E\left[X_{n_{k}}^{-}\right]=E\left[X_{n_{k}}^{+}\right]-E\left[X_{n_{k}}\right] \leq E\left[X_{0}^{+}\right]-E\left[X_{n_{k}}\right] \leq E\left[\left|X_{0}\right|\right]-E\left[X_{n_{k}}\right]
$$

But as X_{0} is integrable and as $\lim _{k \rightarrow \infty} E\left[X_{n_{k}}\right]>-\infty$ by assumption, we obtain that

$$
\infty=\lim _{k \rightarrow \infty} E\left[X_{n_{k}}^{-}\right] \leq E\left[\left|X_{0}\right|\right]-\lim _{k \rightarrow \infty} E\left[X_{n_{k}}\right]<\infty
$$

which gives us a contradiction. Thus we have proved that $\sup _{u \in \mathbb{N}} E\left[X_{u}^{-}\right]<\infty$. For any $n \geq m, N, M>0$, by a), by the choice of m and as $\sup _{k \in \mathbb{N}} E\left[X_{k}^{-}\right]<\infty$, we obtain that

$$
\begin{aligned}
E\left[-X_{n} \mathbf{1}_{\left\{-X_{n} \geq M\right\}}\right] & \leq E\left[X_{m}\right]-E\left[X_{n}\right]+E\left[\left|X_{m}\right| \mathbf{1}_{\left\{-X_{m} \geq N\right\}}\right]+\frac{N}{M} E\left[X_{n}^{-}\right] \\
& \leq \varepsilon / 4+E\left[\left|X_{m}\right| \mathbf{1}_{\left\{-X_{m} \geq N\right\}}\right]+\frac{N}{M} E\left[X_{n}^{-}\right] \\
& \leq \varepsilon / 4+E\left[\left|X_{m}\right| \mathbf{1}_{\left\{-X_{m} \geq N\right\}}\right]+\frac{N}{M} \sup _{u \in \mathbb{N}} E\left[X_{u}^{-}\right]
\end{aligned}
$$

Since X_{u} is integrable for any $u \in \mathbb{N}$ we can find N big enough such that second term above is smaller than $\varepsilon / 4$. After having chosen N we can find $M \geq M_{m}$ such that that the last term above is smaller than $\varepsilon / 4$. Thus, we get for that chosen M that

$$
\sup _{n \geq m} E\left[-X_{n} \mathbf{1}_{\left\{-X_{n} \geq M\right\}}\right] \leq 3 \varepsilon / 4
$$

hence we get the result.

