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Exercise 6.1
Let (Bt)t≥0 be a Brownian motion and define the process (Mt)t≥0 by Mt = sup0≤s≤tBs.

Show that for any fixed t ≥ 0
Mt −Bt

Law= |Bt|
Law= Mt. (1)

That is, show that the random variables have the same density functions.

Solution 6.1 For any g : R→ R bounded Borel measurable function, we know that

E
[
g(|Bt|)

]
=
∫ ∞
−∞

g(|x|) 1√
2πt

e−x
2/(2t) dx =

∫ ∞
0

g(x)
√

2
πt
e−x

2/(2t) dx (2)

Thus, we see that the probability density function of |Bt| on R is given by the function

x 7→ 1x≥0

√
2
πt
e−x

2/(2t).

From Corollary 2.55 of the script, we know that the probability density function of the joint law of
(Bt,Mt) where Mt := sup0≤s≤tBs is given by the function

(x, y) 7→ 2(2y − x)√
2πt3

e−(2y−x)2/(2t) 1{y≥0, x≤y}. (3)

Take any g : R→ R bounded Borel measurable function. We deduce from (3) that

E
[
g(Mt −Bt)

]
=
∫ ∫

0≤y, 0≤y−x
g(y − x) 2(2y − x)√

2πt3
e−(2y−x)2/(2t) dx dy.

By a change of variable u := y − x v := y we get that

E
[
g(Mt −Bt)

]
=
∫ ∫

0≤u, 0≤v
g(u)

√
2
πt3

(u+ v) e−(u+v)2/(2t) du dv (4)

By another change of variable n := u and m := u+ v and as
∫
x e−cx

2/2 dx = − e
−cx2/2

c , we get that

E
[
g(Mt −Bt)

]
=
∫ ∞

0
g(n)

√
2
πt3

∫ ∞
n

me−m
2/(2t) dm dn

=
∫ ∞

0
g(n)

√
2
πt
e−n

2/(2t) dn. (5)

Comparing (2) with (5) yields that Mt −Bt
Law= |Bt|.

Now, from (3), we deduce for any g : R→ R bounded Borel measurable function that

E
[
g(Mt)

]
=
∫ ∫

0≤y, 0≤y−x
g(y) 2(2y − x)√

2πt3
e−(2y−x)2/(2t) dx dy.
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By a change of variable u := y and v := y − x we get that

E
[
g(Mt)

]
=
∫ ∫

0≤u, 0≤v
g(u)

√
2
πt3

(u+ v) e−(u+v)2/(2t) du dv. (6)

Comparing (4) with (6) yields Mt −Bt
Law= Mt.
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Exercise 6.2 Let (Bt)t≥0 be a Brownian motion and denote by Gt := σ(Bu, u ≤ t), t ≥ 0. Define
R̃0f(x) = f(x) and

R̃tf(x) = 1√
2πt

∫ ∞
0

f(y)
[
exp

(
− 1

2t (y − x)2
)

+ exp
(
− 1

2t (y + x)2
)]

dy, t > 0.

Let us consider the process (Xt)t≥0 by Xt := |Bt|. Show that

E
[
f(Xt+h)

∣∣Gt] = R̃hf(Xt) P -a.s. for f ∈ bB(R) and t, h ≥ 0.

Solution 6.2 Fix any t, h ≥ 0 and f ∈ bB(R). The case where h = 0 is trivial, therefore, let h > 0.
From the lecture (cf. Example 2.23 in Section 3.2 in the lecture notes), we know that Brownian
motion is a Markov process with transition semigroup given by R0f̃(x) = f̃(x) and

Rhf̃(x) = 1√
2πh

∫
R
f̃(y) exp

(
− (y − x)2

2h

)
dy when h > 0, f̃ ∈ bB(R).

Therefore, we get for f̃(x) := f(|x|) ∈ bB(R) that

E
[
f(Xt+h)

∣∣Gt] =Rhf̃(Bt)

= 1√
2πh

∫
R
f̃(y) exp

(
− (y −Bt)2

2h

)
dy

= 1√
2πh

∫
[0,∞)

f(y) exp
(
− (y −Bt)2

2h

)
dy

+ 1√
2πh

∫
(−∞,0)

f(−y) exp
(
− (y −Bt)2

2h

)
dy (7)

By a change of variables and by observing that {0} is a null set, we deduce from (7) that

E
[
f(Xt+h)

∣∣Gt] = 1√
2πh

∫
[0,∞)

f(y) exp
(
− (y −Bt)2

2h

)
dy

+ 1√
2πh

∫
[0,∞)

f(y) exp
(
− (y +Bt)2

2h

)
dy (8)

=R̃hf(Bt)

By symmetry of the expression in (8), we see that E
[
f(Xt+h)

∣∣Gt] = R̃hf(−Bt) and thus

E
[
f(Xt+h)

∣∣Gt] = R̃hf(Xt).
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Exercise 6.3 Let (Bt)t≥0 be a Brownian motion. For any a > 0 consider the stopping times

Ta := inf
{
t > 0

∣∣Bt ≥ a},
Show that the Laplace transform of Ta has value:

E
[

exp(−µTa)
]

= exp
(
− a
√

2µ
)
, ∀µ > 0.

and show that P [Ta <∞] = 1.
Hint: Consider the martingale Mλ

t = exp
(
λBt − λ2

2 t
)
.

Solution 6.3 We know that for any λ ∈ R, the process Mλ := (Mλ
t )t≥0 defined by

Mλ
t = exp

(
λBt −

λ2

2 t
)

is a continuous Ft-martingale, where we denote by (Ft)t≥0 the filtration generated by B. Moreover,
for any n ∈ N, Ta ∧ n is a bounded stopping time. Thus, applying the stopping theorem (i.e. Serie
6 Exercise 1) we get

E
[
Mλ
Ta∧n

∣∣∣F0

]
= Mλ

0 = 1 P -a.s.

By taking expectations, we get that
E
[
Mλ
Ta∧n

]
= 1

Now, on the event {Ta <∞} we have

exp
(
λBTa∧n −

λ2

2 (Ta ∧ n)
)
n→∞−→ exp

(
λBTa

− λ2

2 Ta

)
= eλa exp

(
− λ2

2 Ta

)
.

On the event {Ta =∞} we have Bt ≤ a for any t ≥ 0 and thus we get for any λ > 0 that

exp
(
λBTa∧n −

λ2

2 (Ta ∧ n)
)

exp
(
λBn −

λ2

2 n

)
n→∞−→ 0.

We conclude that for any λ > 0

exp
(
λBTa∧n −

λ2

2 (Ta ∧ n)
)
n→∞−→ eλa exp

(
− λ2

2 Ta

)
1{Ta<∞} P -a.s. (9)

Observe that for any n ∈ N we have

0 ≤ exp
(
λBTa∧n −

λ2

2 (Ta ∧ n)
)
≤ eλa

Thus, we deduce from (9), by applying dominated convergence theorem, that for any λ > 0

1 = E
[
Mλ
Ta∧n

] n→∞−→ eλaE

[
exp

(
− λ2

2 Ta

)
1{Ta<∞}

]
and so, for any λ > 0

eλaE

[
exp

(
− λ2

2 Ta

)
1{Ta<∞}

]
= 1. (10)

Take any positive, decreasing sequence (λn)n∈N converging to 0. We deduce from (10) and the
monotone convergence theorem that

P
[
Ta <∞

]
= lim
n→∞

eλnaE

[
exp

(
− λ2

n

2 Ta

)
1{Ta<∞}

]
= 1
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which proves the first part. Thus, as we now know that P [Ta <∞] = 1 we get from (10) that for
any λ > 0

eλaE

[
exp

(
− λ2

2 Ta

)]
= 1. (11)

Fix any µ > 0. For λ :=
√

2µ, (11) yields the desired result.
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Exercise 6.4 Let (Fn)n∈N be a decreasing sequence of sub-σ-fields of F (i.e. Fn+1 ⊆ Fn ⊆ F,∀n ∈
N) and let (Xn)n∈N be a backward submartingale, i.e. E[|Xn|] < ∞, Xn is Fn-measurable and
E[Xn |Fn+1] ≥ Xn+1 P -a.s. for every n ∈ N.

(a) Show that for any n ≥ m, N,M > 0,

E
[
−Xn 1{−Xn≥M}

]
≤ E

[
Xm]− E

[
Xn

]
+ E

[
|Xm|1{−Xm≥N}

]
+ N

M
E
[
X−n
]
.

(b) Show that lim
n→∞

E[Xn] > −∞ implies that the sequence (Xn)n∈N is uniformly integrable.
Hint: use a) to conclude that (X−n )n∈N is uniformly integrable.

Solution 6.4

(a) For any n ≥ m, N,M > 0, by the backward submartingale property, using that the set
{−Xn > M} ∈ Fn, we obtain that

E
[
−Xn 1{−Xn≥M}

]
= E

[
−Xn

]
− E[−Xn 1{−Xn<M}

]
≤ E

[
−Xn

]
− E[−Xm 1{−Xn<M}

]
= E

[
−Xn

]
− E

[
−Xm

]
+ E[−Xm 1{−Xn≥M}

]
= E

[
Xm −Xn

]
+ E[−Xm 1{−Xn≥M,−Xm≥N}

]
+ E[−Xm 1{−Xn≥M,0<−Xm<N}

]
+ E[−Xm 1{−Xn≥M,−Xm≤0}

]
≤ E

[
Xm −Xn

]
+ E[−Xm 1{−Xn≥M,−Xm≥N}

]
+ E[−Xm 1{−Xn≥M,0<−Xm<N}

]
≤ E

[
Xm]− E

[
Xn

]
+ E

[
|Xm|1{−Xm≥N}

]
+ N

M
E
[
−Xn 1{−Xn≥M}

]
≤ E

[
Xm]− E

[
Xn

]
+ E

[
|Xm|1{−Xm≥N}

]
+ N

M
E
[
−Xn 1{−Xn≥0}

]
= E

[
Xm]− E

[
Xn

]
+ E

[
|Xm|1{−Xm≥N}

]
+ N

M
E
[
X−n
]
.

(b) First, as (Xn)n∈N is a backward submartingale, we obtain that for any n

X+
n = Xn +X−n ≤ E[X0 |Fn] +X−n

Thus, as (E[X0 |Fn])n∈N is uniformly integrable, if we can show that (X−n )n∈N is uniformly
integrable, we can conclude that also (X+

n )n∈N is uniformly integrable which then implies
that (Xn)n∈N is uniformly integrable. Now, (X−n )n∈N being uniformly integrable is equivalent
having that for any ε > 0 we find M ≥ 0 such that

sup
n∈N

E
[
−Xn 1{−Xn≥M}

]
≤ ε.

Fix any ε > 0. Due to the assumption that lim
n→∞

E[Xn] > −∞, we can find m ∈ N such that
for any n ≥ m

E[Xm]− E[Xn] ≤ ε/4.

Since Xn is integrable for every n ∈ N we can find Mm ≥ 0 such that for any M ≥Mm

max
n<m

E
[
−Xn 1{−Xn≥M}

]
≤ ε/4.

As

sup
n∈N

E
[
−Xn 1{−Xn≥M}

]
≤ max

n<m
E
[
−Xn 1{−Xn≥M}

]
+ sup
n≥m

E
[
−Xn 1{−Xn≥M}

]
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it suffices to find M ≥Mm such that

sup
n≥m

E
[
−Xn 1{−Xn≥M}

]
≤ 3ε/4.

We first observe that (X+
n )n∈N is also a backward submartingale. Indeed, due to Jensen’s

inequality, we obtain that

E
[
X+
n

∣∣Fn+1
]
≥ E[Xn |Fn+1]+ ≥ X+

n+1.

Now, we claim that supn∈NE[X−n ] <∞. Assume by contradiction that supn∈NE[X−n ] =∞.
Then, we can find a subsequence (nk)k∈N such that

lim
k→∞

E[X−nk
] = sup

n∈N
E[X−n ] =∞.

Using that (X+
n )n∈N is also a backward submartingale, we obtain for any k that

E
[
X−nk

]
= E

[
X+
nk

]
− E

[
Xnk

]
≤ E

[
X+

0
]
− E

[
Xnk

]
≤ E

[
|X0|

]
− E

[
Xnk

]
.

But as X0 is integrable and as lim
k→∞

E
[
Xnk

]
> −∞ by assumption, we obtain that

∞ = lim
k→∞

E[X−nk
] ≤ E

[
|X0|

]
− lim
k→∞

E
[
Xnk

]
<∞

which gives us a contradiction. Thus we have proved that supu∈NE[X−u ] < ∞. For any
n ≥ m, N,M > 0, by a), by the choice of m and as supk∈NE[X−k ] <∞, we obtain that

E
[
−Xn 1{−Xn≥M}

]
≤ E

[
Xm]− E

[
Xn

]
+ E

[
|Xm|1{−Xm≥N}

]
+ N

M
E
[
X−n
]

≤ ε/4 + E
[
|Xm|1{−Xm≥N}

]
+ N

M
E
[
X−n
]

≤ ε/4 + E
[
|Xm|1{−Xm≥N}

]
+ N

M
sup
u∈N

E
[
X−u
]
.

Since Xu is integrable for any u ∈ N we can find N big enough such that second term above
is smaller than ε/4. After having chosen N we can find M ≥ Mm such that that the last
term above is smaller than ε/4. Thus, we get for that chosen M that

sup
n≥m

E
[
−Xn 1{−Xn≥M}

]
≤ 3ε/4

hence we get the result.
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