Brownian Motion and Stochastic Calculus

Exercise sheet 7

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than April 14th

Exercise 7.1 Let $(B_t)_{t \in [0,1]}$ be a Brownian motion on (Ω, \mathcal{F}, P) and define the process $(M_t)_{t \geq 0}$ by $M_t = \sup_{0 \leq s \leq t} B_s$. Consider the random variable

$$D = \sup_{0 \le t' \le 1} (\sup_{0 \le t \le t'} B_t - B_{t'}).$$
(1)

That is, D characterizes the maximal possible "downfall" in trajectories of the Brownian motion on the time interval [0, 1].

- (a) Show that $D \stackrel{law}{=} \sup_{0 \le t \le 1} |B_t|$. *Hint:* You can use a stronger version of Ex 5-1, which is known as "Lévy's Theorem": The processes M - B and |B| have the saw law under P.
- (b) Show that $\sup_{0 \le t \le 1} |B_t| \stackrel{law}{=} 1/\sqrt{\bar{T}_1}$, where $\bar{T}_1 = \inf\{t > 0 : |B_t| \ge 1\}$. *Hint:* Rewrite $P[\sup_{0 \le t \le 1} |B_t| \le x]$ using the self-similarity property of Brownian motion.
- (c) Conclude that $E[D] = \sqrt{\pi/2}$. *Hint:* For $\sigma > 0$ use the identity

$$\sqrt{2/\pi} \int_0^\infty e^{-x^2/(2\sigma^2)} dx = \sigma,$$

to rewrite the expectation and apply the Laplace transform of \overline{T}_1 to conclude the result. Note that you can use the same techniques as Exercise 6.3. to show that

$$\mathbb{E}\left[\exp\left(-\frac{\lambda^2}{2}\bar{T}_1\right)\right] = \frac{1}{\cosh(\lambda)}$$

Exercise 7.2 For a function $f:[0,\infty) \to \mathbb{R}$, we define its variation $|f|:[0,\infty) \to [0,\infty]$ by

$$f|(t) := \sup\bigg\{\sum_{t_i \in \Pi} \big|f(t_{i+1}) - f(t_i)\big| \bigg| \Pi \text{ is a partition of } [0,t]\bigg\}.$$

We say that f has finite variation (FV) if $|f|(t) < \infty$ for all $t \ge 0$.

(a) Show that f has finite variation if and only if there exist non decreasing functions f₁, f₂:
[0,∞) → ℝ such that f = f₁ - f₂. *Hint:* Show that |f| is non decreasing.

Recall that if f is a non decreasing function, then there exists a unique positive measure μ_f on $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$ such that $\mu_f([0,t]) = f(t) - f(0)$ for all $t \ge 0$. Therefore, if f is non decreasing, we call a function $g: [0,\infty) \to \mathbb{R}$ f-integrable in the Lebesgue–Stieltjes sense if $\int_0^\infty |g(s)| \mu_f(ds) < \infty$. In that case, we define $\int g(s) df(s) := \int g(s) \mu_f(ds)$ and call it the Lebesgue–Stieltjes integral.

(b) Let f be of finite variation and continuous and $g: [0, \infty) \to \mathbb{R}$ such that $\int_0^\infty |g(s)| \, \mu_{|f|}(ds) < \infty$. Show that there are non decreasing, continuous functions $f_1, f_2: [0, \infty) \to \mathbb{R}$ such that $f = f_1 - f_2$ and both

$$\int_0^\infty |g(s)|\,\mu_{f_1}(ds)<\infty,\quad \int_0^\infty |g(s)|\,\mu_{f_2}(ds)<\infty.$$

Moreover, show that

$$\int g(s) \, df(s) := \int g(s) \, \mu_{f_1}(ds) - \int g(s) \, \mu_{f_2}(ds)$$

is well-defined.

Remark: If f is of finite variation and continuous, we call g f-integrable in the Lebesgue-Stieltjes sense if g satisfies $\int_0^\infty |g(s)| \mu_{|f|}(ds) < \infty$.