Brownian Motion and Stochastic Calculus

Exercise sheet 7

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than April 14th

Exercise 7.1 Let $(B_t)_{t \in [0,1]}$ be a Brownian motion on (Ω, \mathcal{F}, P) and define the process $(M_t)_{t \geq 0}$ by $M_t = \sup_{0 \leq s \leq t} B_s$. Consider the random variable

$$D = \sup_{0 \le t' \le 1} (\sup_{0 \le t \le t'} B_t - B_{t'}).$$
(1)

That is, D characterizes the maximal possible "downfall" in trajectories of the Brownian motion on the time interval [0, 1].

- (a) Show that $D \stackrel{law}{=} \sup_{0 \le t \le 1} |B_t|$. Hint: You can use a stronger version of Ex 5-1, which is known as "Lévy's Theorem": The processes M - B and |B| have the saw law under P.
- (b) Show that $\sup_{0 \le t \le 1} |B_t| \stackrel{law}{=} 1/\sqrt{\bar{T}_1}$, where $\bar{T}_1 = \inf\{t > 0 : |B_t| \ge 1\}$. *Hint:* Rewrite $P[\sup_{0 \le t \le 1} |B_t| \le x]$ using the self-similarity property of Brownian motion (cf. Proposition 1.1 (3) in Section 2.1 of the lecture notes).
- (c) Conclude that $E[D] = \sqrt{\pi/2}$. *Hint:* For $\sigma > 0$ use the identity

$$\sqrt{2/\pi} \int_0^\infty e^{-x^2/(2\sigma^2)} dx = \sigma,$$

to rewrite the expectation and apply the Laplace transform of \overline{T}_1 (cf. Ex 4-2) to conclude the result.

Solution 7.1

(a) Let $Z_t := M_t - B_t$ and $Y_t := |B_t|$. With the definition of D we have to check that

$$\sup_{0 \le t \le 1} Z_t \stackrel{law}{=} \sup_{0 \le t \le 1} Y_t$$

Since both Z and Y are continuous processes, it suffices to check that

$$\sup_{t \in [0,1] \cap \mathbb{Q}} Z_t \stackrel{law}{=} \sup_{t \in [0,1] \cap \mathbb{Q}} Y_t.$$
⁽²⁾

Let $(t_n)_{n \in \mathbb{N}}$ be a counting sequence in $[0, 1] \cap \mathbb{Q}$. By Lévy's Theorem, the processes Z and Y have the same law, and therefore for $n \in \mathbb{N}$ the random variables

$$Z_n := \sup(Z_{t_1}, Z_{t_2}, \dots, Z_{t_n}) \quad Y_n := \sup(Y_{t_1}, Y_{t_2}, \dots, Y_{t_n})$$

have the same law. Since Z_n and Y_n converge monotonically to $\sup_{t \in [0,1] \cap \mathbb{Q}} Z_t$ and $\sup_{t \in [0,1] \cap \mathbb{Q}} Y_t$ we have for all $x \in \mathbb{R}$

$$P\left[\sup_{t\in[0,1]\cap\mathbb{Q}} Z_t \le x\right] = P\left[\bigcap_{n=0}^{\infty} \{Z_n \le x\}\right]$$
$$= \lim_{n\to\infty} P[Z_n \le x]$$
$$= \lim_{n\to\infty} P[Y_n \le x]$$
$$= P\left[\sup_{t\in[0,1]\cap\mathbb{Q}} Y_t \le x\right]$$

,

which yields (2).

(b) We recall the self-similarity property of Brownian motion, i.e., for c > 0

$$cB_{t/c^2} \stackrel{law}{=} B_t.$$

Therefore, for x > 0

$$\begin{split} P[\sup_{0 \le t \le 1} |B_t| \le x] = & P[\sup_{0 \le t \le 1} |B_{t/x^2}| \le 1] \\ = & P[\sup_{0 \le t \le 1/x^2} |B_t| \le 1] \\ = & P[\bar{T}_1 \ge x^{-2}] \\ = & P[1/\sqrt{\bar{T}_1} \le x]. \end{split}$$

(c) Using the identity

$$\sqrt{2/\pi} \int_0^\infty e^{-x^2/(2\sigma^2)} dx = \sigma$$

and Tonelli's Theorem we have

$$\begin{split} E[D] = & E[\sup_{0 \le t \le 1} |B_t|] \\ = & E[1/\sqrt{\bar{T}_1}] \\ = & \sqrt{2/\pi} \int_0^\infty E[e^{-x^2 \bar{T}_1/2}] dx. \end{split}$$

From Ex 4-2 we know that the Laplace transform of \overline{T}_1 is

$$E[e^{-\mu \bar{T}_1}] = 1/\cosh(\sqrt{2\mu}), \quad \forall \mu > 0.$$

Putting everything together, we have

$$\begin{split} E[D] = &\sqrt{2/\pi} \int_0^\infty \frac{dx}{\cosh(x)} \\ = &2\sqrt{2/\pi} \int_0^\infty \frac{e^x dx}{e^{2x} + 1} \\ = &2\sqrt{2/\pi} \int_1^\infty \frac{dy}{y^2 + 1} \\ = &2\sqrt{\frac{2}{\pi}} \cdot \frac{\pi}{4} = \sqrt{\frac{\pi}{2}}. \end{split}$$

Exercise 7.2 For a function $f:[0,\infty) \to \mathbb{R}$, we define its variation $|f|:[0,\infty) \to [0,\infty]$ by

$$|f|(t) := \sup \left\{ \sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right| \, \middle| \, \Pi \text{ is a partition of } [0, t] \right\}.$$

We say that f has finite variation (FV) if $|f|(t) < \infty$ for all $t \ge 0$.

(a) Show that f has finite variation if and only if there exist non decreasing functions f_1, f_2 : $[0, \infty) \to \mathbb{R}$ such that $f = f_1 - f_2$. *Hint:* Show that |f| is non decreasing.

Recall that if f is a non decreasing and continuous function, then there exists a unique positive measure μ_f on $(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+))$ such that $\mu_f([0,t]) = f(t) - f(0)$ for all $t \ge 0$. Therefore, if f is non decreasing and continuous, we call a function $g: [0, \infty) \to \mathbb{R}$ *f*-integrable in the Lebesgue-Stieltjes sense if $\int_0^\infty |g(s)| \mu_f(ds) < \infty$. In that case, we define $\int g(s) df(s) := \int g(s) \mu_f(ds)$ and call it the Lebesgue-Stieltjes integral.

(b) Let f be of finite variation and continuous and $g: [0, \infty) \to \mathbb{R}$ such that $\int_0^\infty |g(s)| \, \mu_{|f|}(ds) < \infty$. Show that there are non decreasing, continuous functions $f_1, f_2: [0, \infty) \to \mathbb{R}$ such that $f = f_1 - f_2$ and both

$$\int_{0}^{\infty} |g(s)| \, \mu_{f_1}(ds) < \infty, \quad \int_{0}^{\infty} |g(s)| \, \mu_{f_2}(ds) < \infty.$$

Moreover, show that

$$\int g(s) \, df(s) := \int g(s) \, \mu_{f_1}(ds) - \int g(s) \, \mu_{f_2}(ds)$$

is well-defined.

Hint: Recall that if f has finite variation and continuous, then |f| is continuous.

Remark: If f is of finite variation and continuous, we call g f-integrable in the Lebesgue-Stieltjes sense if g satisfies $\int_0^\infty |g(s)| \mu_{|f|}(ds) < \infty$.

Solution 7.2

(a) For the one direction, let $f:[0,\infty)\to\mathbb{R}$ be of finite variation. We define

$$f_1(t) := \frac{|f|(t) + f(t)|}{2}$$
 and $f_2(t) := \frac{|f|(t) - f(t)|}{2}$

where |f|(t) denotes the variation of f. We claim that both f_1, f_2 are non decreasing. We first show that |f| is non decreasing. For that purpose, fix any $0 \le s < t$ and denote by Π_s and Π_t the set of finite partition of [0, s] and [0, t], respectively. Moreover, let $\Pi_{s,t}$ be the set of finite partitions of [0, t] such that s is a grid point, i.e. $s = t_i$ for some t_i . Then, we see that

$$|f|(s) \le \sup_{\Pi_{s;t}} \sum_{t_i \in \Pi} |f(t_{i+1}) - f(t_i)| \le \sup_{\Pi_t} \sum_{t_i \in \Pi} |f(t_{i+1}) - f(t_i)| = |f|(t).$$

So we conclude that |f| is indeed non decreasing. We denote by $\Pi_{[s,t]}$ the set of finite partitions of [s,t]. Then, we have

$$\sup_{\Pi_{s;t}} \sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right| = \sup_{\Pi_s} \sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right| + \sup_{\Pi_{[s,t]}} \sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right|.$$

Updated: April 1, 2017

Now, to see that f_1 is non decreasing, it suffices to show that for any $0 \le s < t$,

$$|f|(t) - |f|(s) \ge -(f(t) - f(s)).$$

To see this, observe that

$$f|(t) - |f|(s) \ge \sup_{\Pi_{s;t}} \sum_{t_i \in \Pi} |f(t_{i+1}) - f(t_i)| - \sup_{\Pi_s} \sum_{t_i \in \Pi} |f(t_{i+1}) - f(t_i)|$$
$$= \sup_{\Pi_{[s,t]}} \sum_{t_i \in \Pi} |f(t_{i+1}) - f(t_i)| \ge -(f(t) - f(s)).$$

To show that f_2 is non decreasing, it suffices to show that

$$|f|(t) - |f|(s) \ge f(t) - f(s),$$

which we get by applying the same argument as for f_1 . For the other direction, let $f = f_1 - f_2$, where f_1 and f_2 are non decreasing. Then we have for any $t \ge 0$ and any partition Π of [0, t] that

$$\begin{split} \sum_{t_i \in \Pi} \left| f(t_{i+1}) - f(t_i) \right| &= \sum_{t_i \in \Pi} \left| \left(f_1(t_{i+1}) - f_2(t_{i+1}) \right) - \left(f_1(t_i) - f_2(t_i) \right) \right| \\ &\leq \sum_{t_i \in \Pi} \left| f_1(t_{i+1}) - f_1(t_i) \right| + \sum_{t_i \in \Pi} \left| f_2(t_{i+1}) - f_2(t_i) \right| \\ &\leq f_1(t) - f_1(0) + f_2(t) - f_2(0). \end{split}$$

Thus, we see that for every $t \ge 0$

$$|f|(t) = \sup_{\Pi} \sum_{t_i \in \Pi} |f(t_{i+1}) - f(t_i)| < \infty.$$

Remark: f_1, f_2 are not unique.

(b) Define $f_1 = |f|$ and $f_2 := |f| - f$. We deduce from **a**) that they are both non decreasing and of course $f = f_1 - f_2$. Moreover, due to the hint, both f_1 and f_2 are continuous. Let μ_{f_1} and μ_{f_2} be the corresponding measures defined in the exercise. Since $\mu_{f_2}([0,t]) = f_2(t) \le 2|f|(t) = 2\mu_{|f|}([0,t])$, for every $t \ge 0$, we conclude that $\mu_{f_2} \le 2\mu_{|f|}$ on $\mathcal{B}([0,\infty))$. Thus, we see that

$$\int_0^\infty |g(s)| \, \mu_{f_1}(ds) < \infty, \quad \int_0^\infty |g(s)| \, \mu_{f_2}(ds) < \infty.$$

Therefore,

$$\int_0^\infty g(s)\,\mu_{f_1}(ds) - \int_0^\infty g(s)\,\mu_{f_2}(ds)$$

is well-defined. To show that $\int g df$ is well-defined, it remains to show that the definition

$$\int g(s) \, df(s) := \int g(s) \, \mu_{f_1}(ds) - \int g(s) \, \mu_{f_2}(ds)$$

is independent of the choice of f_1, f_2 . Let $\overline{f}_1, \overline{f}_2$ be two other functions with the desired properties. Fix any $t \ge 0$. We have for $g(s) := \mathbf{1}_{[0,t]}(s)$ that for any $u \ge 0$

$$\int_{0}^{u} g(s) \mu_{\overline{f}_{1}}(ds) - \int_{0}^{u} g(s) \mu_{\overline{f}_{2}}(ds) = \overline{f}_{1}(t \wedge u) - \overline{f}_{1}(0) - \overline{f}_{2}(t \wedge u) + \overline{f}_{2}(0)$$

= $f(t \wedge u) - f(0)$
= $f_{1}(t \wedge u) - f_{2}(t \wedge u) + f_{2}(0)$
= $\int_{0}^{u} g(s) \mu_{f_{1}}(ds) - \int_{0}^{u} g(s) \mu_{f_{2}}(ds).$

Updated: April 1, 2017

Thus, we conclude that the same holds true for $g(s) := \mathbf{1}_A$, where $A \in \mathcal{B}(\mathbb{R}_+)$. We conclude that the same holds true for general g Borel by measure theoretical induction.