Brownian Motion and Stochastic Calculus

Exercise sheet 7

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than April 14th

Exercise 7.1 Let $\left(B_{t}\right)_{t \in[0,1]}$ be a Brownian motion on (Ω, \mathcal{F}, P) and define the process $\left(M_{t}\right)_{t \geq 0}$ by $M_{t}=\sup _{0 \leq s \leq t} B_{s}$. Consider the random variable

$$
\begin{equation*}
D=\sup _{0 \leq t^{\prime} \leq 1}\left(\sup _{0 \leq t \leq t^{\prime}} B_{t}-B_{t^{\prime}}\right) . \tag{1}
\end{equation*}
$$

That is, D characterizes the maximal possible "downfall" in trajectories of the Brownian motion on the time interval $[0,1]$.
(a) Show that $D \stackrel{\text { law }}{=} \sup _{0 \leq t \leq 1}\left|B_{t}\right|$.

Hint: You can use a stronger version of Ex $5-1$, which is known as "Lévy's Theorem": The processes $M-B$ and $|B|$ have the saw law under P.
(b) Show that $\sup _{0 \leq t \leq 1}\left|B_{t}\right| \stackrel{\text { law }}{=} 1 / \sqrt{\bar{T}_{1}}$, where $\bar{T}_{1}=\inf \left\{t>0:\left|B_{t}\right| \geq 1\right\}$.

Hint: Rewrite $P\left[\sup _{0 \leq t \leq 1}\left|B_{t}\right| \leq x\right]$ using the self-similarity property of Brownian motion (cf. Proposition 1.1 (3) in Section 2.1 of the lecture notes).
(c) Conclude that $E[D]=\sqrt{\pi / 2}$.

Hint: For $\sigma>0$ use the identity

$$
\sqrt{2 / \pi} \int_{0}^{\infty} e^{-x^{2} /\left(2 \sigma^{2}\right)} d x=\sigma
$$

to rewrite the expectation and apply the Laplace transform of \bar{T}_{1} (cf. Ex 4-2) to conclude the result.

Solution 7.1

(a) Let $Z_{t}:=M_{t}-B_{t}$ and $Y_{t}:=\left|B_{t}\right|$. With the definition of D we have to check that

$$
\sup _{0 \leq t \leq 1} Z_{t} \stackrel{l a w}{=} \sup _{0 \leq t \leq 1} Y_{t} .
$$

Since both Z and Y are continuous processes, it suffices to check that

$$
\begin{equation*}
\sup _{t \in[0,1] \cap \mathbb{Q}} Z_{t} \stackrel{l a w}{=} \sup _{t \in[0,1] \cap \mathbb{Q}} Y_{t} . \tag{2}
\end{equation*}
$$

Let $\left(t_{n}\right)_{n \in \mathbb{N}}$ be a counting sequence in $[0,1] \cap \mathbb{Q}$. By Lévy's Theorem, the processes Z and Y have the same law, and therefore for $n \in \mathbb{N}$ the random variables

$$
Z_{n}:=\sup \left(Z_{t_{1}}, Z_{t_{2}}, \ldots, Z_{t_{n}}\right) \quad Y_{n}:=\sup \left(Y_{t_{1}}, Y_{t_{2}}, \ldots, Y_{t_{n}}\right)
$$

have the same law. Since Z_{n} and Y_{n} converge monotonically to $\sup _{t \in[0,1] \cap \mathbb{Q}} Z_{t}$ and $\sup _{t \in[0,1] \cap \mathbb{Q}} Y_{t}$ we have for all $x \in \mathbb{R}$

$$
\begin{aligned}
P\left[\sup _{t \in[0,1] \cap \mathbb{Q}} Z_{t} \leq x\right] & =P\left[\bigcap_{n=0}^{\infty}\left\{Z_{n} \leq x\right\}\right] \\
& =\lim _{n \rightarrow \infty} P\left[Z_{n} \leq x\right] \\
& =\lim _{n \rightarrow \infty} P\left[Y_{n} \leq x\right] \\
& =P\left[\sup _{t \in[0,1] \cap \mathbb{Q}} Y_{t} \leq x\right]
\end{aligned}
$$

which yields (2).
(b) We recall the self-similarity property of Brownian motion, i.e., for $c>0$

$$
c B_{t / c^{2}} \stackrel{l a w}{=} B_{t} .
$$

Therefore, for $x>0$

$$
\begin{aligned}
P\left[\sup _{0 \leq t \leq 1}\left|B_{t}\right| \leq x\right] & =P\left[\sup _{0 \leq t \leq 1}\left|B_{t / x^{2}}\right| \leq 1\right] \\
& =P\left[\sup _{0 \leq t \leq 1 / x^{2}}\left|B_{t}\right| \leq 1\right] \\
& =P\left[\bar{T}_{1} \geq x^{-2}\right] \\
& =P\left[1 / \sqrt{\bar{T}_{1}} \leq x\right]
\end{aligned}
$$

(c) Using the identity

$$
\sqrt{2 / \pi} \int_{0}^{\infty} e^{-x^{2} /\left(2 \sigma^{2}\right)} d x=\sigma
$$

and Tonelli's Theorem we have

$$
\begin{aligned}
E[D] & =E\left[\sup _{0 \leq t \leq 1}\left|B_{t}\right|\right] \\
& =E\left[1 / \sqrt{\bar{T}_{1}}\right] \\
& =\sqrt{2 / \pi} \int_{0}^{\infty} E\left[e^{-x^{2} \bar{T}_{1} / 2}\right] d x .
\end{aligned}
$$

From Ex $4-2$ we know that the Laplace transform of \bar{T}_{1} is

$$
E\left[e^{-\mu \bar{T}_{1}}\right]=1 / \cosh (\sqrt{2 \mu}), \quad \forall \mu>0
$$

Putting everything together, we have

$$
\begin{aligned}
E[D] & =\sqrt{2 / \pi} \int_{0}^{\infty} \frac{d x}{\cosh (x)} \\
& =2 \sqrt{2 / \pi} \int_{0}^{\infty} \frac{e^{x} d x}{e^{2 x}+1} \\
& =2 \sqrt{2 / \pi} \int_{1}^{\infty} \frac{d y}{y^{2}+1} \\
& =2 \sqrt{\frac{2}{\pi}} \cdot \frac{\pi}{4}=\sqrt{\frac{\pi}{2}}
\end{aligned}
$$

Exercise 7.2 For a function $f:[0, \infty) \rightarrow \mathbb{R}$, we define its variation $|f|:[0, \infty) \rightarrow[0, \infty]$ by

$$
|f|(t):=\sup \left\{\sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| \mid \Pi \text { is a partition of }[0, t]\right\}
$$

We say that f has finite variation (FV) if $|f|(t)<\infty$ for all $t \geq 0$.
(a) Show that f has finite variation if and only if there exist non decreasing functions f_{1}, f_{2} : $[0, \infty) \rightarrow \mathbb{R}$ such that $f=f_{1}-f_{2}$.
Hint: Show that $|f|$ is non decreasing.
Recall that if f is a non decreasing and continuous function, then there exists a unique positive measure μ_{f} on $\left(\mathbb{R}_{+}, \mathcal{B}\left(\mathbb{R}_{+}\right)\right)$such that $\mu_{f}([0, t])=f(t)-f(0)$ for all $t \geq 0$. Therefore, if f is non decreasing and continuous, we call a function $g:[0, \infty) \rightarrow \mathbb{R} f$-integrable in the LebesgueStieltjes sense if $\int_{0}^{\infty}|g(s)| \mu_{f}(d s)<\infty$. In that case, we define $\int g(s) d f(s):=\int g(s) \mu_{f}(d s)$ and call it the Lebesgue-Stieltjes integral.
(b) Let f be of finite variation and continuous and $g:[0, \infty) \rightarrow \mathbb{R}$ such that $\int_{0}^{\infty}|g(s)| \mu_{|f|}(d s)<$ ∞. Show that there are non decreasing, continuous functions $f_{1}, f_{2}:[0, \infty) \rightarrow \mathbb{R}$ such that $f=f_{1}-f_{2}$ and both

$$
\int_{0}^{\infty}|g(s)| \mu_{f_{1}}(d s)<\infty, \quad \int_{0}^{\infty}|g(s)| \mu_{f_{2}}(d s)<\infty
$$

Moreover, show that

$$
\int g(s) d f(s):=\int g(s) \mu_{f_{1}}(d s)-\int g(s) \mu_{f_{2}}(d s)
$$

is well-defined.

Hint: Recall that if f has finite variation and continuous, then $|f|$ is continuous.
Remark: If f is of finite variation and continuous, we call g-integrable in the LebesgueStieltjes sense if g satisfies $\int_{0}^{\infty}|g(s)| \mu_{|f|}(d s)<\infty$.

Solution 7.2

(a) For the one direction, let $f:[0, \infty) \rightarrow \mathbb{R}$ be of finite variation. We define

$$
f_{1}(t):=\frac{|f|(t)+f(t)}{2} \quad \text { and } \quad f_{2}(t):=\frac{|f|(t)-f(t)}{2}
$$

where $|f|(t)$ denotes the variation of f. We claim that both f_{1}, f_{2} are non decreasing. We first show that $|f|$ is non decreasing. For that purpose, fix any $0 \leq s<t$ and denote by Π_{s} and Π_{t} the set of finite partition of $[0, s]$ and $[0, t]$, respectively. Moreover, let $\Pi_{s ; t}$ be the set of finite partitions of $[0, t]$ such that s is a grid point, i.e. $s=t_{i}$ for some t_{i}. Then, we see that

$$
|f|(s) \leq \sup _{\Pi_{s} ; t} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| \leq \sup _{\Pi_{t}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right|=|f|(t) .
$$

So we conclude that $|f|$ is indeed non decreasing. We denote by $\Pi_{[s, t]}$ the set of finite partitions of $[s, t]$. Then, we have

$$
\sup _{\Pi_{s ; t}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right|=\sup _{\Pi_{s}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right|+\sup _{\Pi_{[s, t]}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| .
$$

Now, to see that f_{1} is non decreasing, it suffices to show that for any $0 \leq s<t$,

$$
|f|(t)-|f|(s) \geq-(f(t)-f(s))
$$

To see this, observe that

$$
\begin{aligned}
|f|(t)-|f|(s) & \geq \sup _{\Pi_{s ; t}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right|-\sup _{\Pi_{s}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| \\
& =\sup _{\Pi_{[s, t]}} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| \geq-(f(t)-f(s)) .
\end{aligned}
$$

To show that f_{2} is non decreasing, it suffices to show that

$$
|f|(t)-|f|(s) \geq f(t)-f(s)
$$

which we get by applying the same argument as for f_{1}.
For the other direction, let $f=f_{1}-f_{2}$, where f_{1} and f_{2} are non decreasing. Then we have for any $t \geq 0$ and any partition Π of $[0, t]$ that

$$
\begin{aligned}
\sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| & =\sum_{t_{i} \in \Pi}\left|\left(f_{1}\left(t_{i+1}\right)-f_{2}\left(t_{i+1}\right)\right)-\left(f_{1}\left(t_{i}\right)-f_{2}\left(t_{i}\right)\right)\right| \\
& \leq \sum_{t_{i} \in \Pi}\left|f_{1}\left(t_{i+1}\right)-f_{1}\left(t_{i}\right)\right|+\sum_{t_{i} \in \Pi}\left|f_{2}\left(t_{i+1}\right)-f_{2}\left(t_{i}\right)\right| \\
& \leq f_{1}(t)-f_{1}(0)+f_{2}(t)-f_{2}(0)
\end{aligned}
$$

Thus, we see that for every $t \geq 0$

$$
|f|(t)=\sup _{\Pi} \sum_{t_{i} \in \Pi}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right|<\infty
$$

Remark: f_{1}, f_{2} are not unique.
(b) Define $f_{1}=|f|$ and $f_{2}:=|f|-f$. We deduce from a) that they are both non decreasing and of course $f=f_{1}-f_{2}$. Moreover, due to the hint, both f_{1} and f_{2} are continuous. Let $\mu_{f_{1}}$ and $\mu_{f_{2}}$ be the corresponding measures defined in the exercise. Since $\mu_{f_{2}}([0, t])=f_{2}(t) \leq$ $2|f|(t)=2 \mu_{|f|}([0, t])$, for every $t \geq 0$, we conclude that $\mu_{f_{2}} \leq 2 \mu_{|f|}$ on $\mathcal{B}([0, \infty))$. Thus, we see that

$$
\int_{0}^{\infty}|g(s)| \mu_{f_{1}}(d s)<\infty, \quad \int_{0}^{\infty}|g(s)| \mu_{f_{2}}(d s)<\infty
$$

Therefore,

$$
\int_{0}^{\infty} g(s) \mu_{f_{1}}(d s)-\int_{0}^{\infty} g(s) \mu_{f_{2}}(d s)
$$

is well-defined. To show that $\int g d f$ is well-defined, it remains to show that the definition

$$
\int g(s) d f(s):=\int g(s) \mu_{f_{1}}(d s)-\int g(s) \mu_{f_{2}}(d s)
$$

is independent of the choice of f_{1}, f_{2}. Let \bar{f}_{1}, \bar{f}_{2} be two other functions with the desired properties. Fix any $t \geq 0$. We have for $g(s):=\mathbf{1}_{[0, t]}(s)$ that for any $u \geq 0$

$$
\begin{aligned}
\int_{0}^{u} g(s) \mu_{\bar{f}_{1}}(d s)-\int_{0}^{u} g(s) \mu_{\bar{f}_{2}}(d s) & =\bar{f}_{1}(t \wedge u)-\bar{f}_{1}(0)-\bar{f}_{2}(t \wedge u)+\bar{f}_{2}(0) \\
& =f(t \wedge u)-f(0) \\
& =f_{1}(t \wedge u)-f_{2}(t \wedge u)+f_{2}(0) \\
& =\int_{0}^{u} g(s) \mu_{f_{1}}(d s)-\int_{0}^{u} g(s) \mu_{f_{2}}(d s)
\end{aligned}
$$

Thus, we conclude that the same holds true for $g(s):=\mathbf{1}_{A}$, where $A \in \mathcal{B}\left(\mathbb{R}_{+}\right)$. We conclude that the same holds true for general g Borel by measure theoretical induction.

