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Exercise 8.1 Recall that for M,N ∈Mc
0,loc, the quadratic covariation process 〈M,N〉 is defined

by
〈M,N〉 = 1

4 (〈M +N〉 − 〈M −N〉) .

1. Show that 〈M,N〉 is the unique (up to indistiguishability) continuous process B of finite
variation with B0 = 0 such that MN −B ∈Mc

0,loc.
Hint: Use Proposition 4.(1.4) in the lecture notes.
Remark: As an immediate consequence of a), 〈·, ·〉 is bilinear.

2. Show that for any stopping time τ ,

〈Mτ , N〉 = 〈M,Nτ 〉 = 〈M,N〉τ

(again, up to indistinguishability).

Solution 8.1

(a) It is clear that 〈M,N〉0 = 0 and that 〈M,N〉 is of finite variation, given that is a sum of
monotone processes. Note that the sum of local martingale is a local martingale. Then
MN − 1

4 (〈M +N〉 − 〈M −N〉) is a local martingale because 1
4MN = (M +N)2− (M −N)2.

To see that it is unique note that if B,B′ are continuous processes of finite variation with
B0, B

′
0 = 0 such that MN −B and MN −B′ are martingales, note that (MN −B)− (MN −

B′) = B −B′ is a martingale with finite variation. Proposition (1.4) implies that B = B′.

(b) From (a) it is enough to show that MτN − 〈M,N〉τ = (MτNτ − 〈M,N〉τ ) +Mτ (N −Nτ )
is a local martingale. The first term is a local martingale by definition so it is just enough to
show that Mτ (N −Nτ ) is a local martingale. For this take τn ↗∞ such that for all n ∈ N,
Mτn and Nτn are bounded martingales. Now, take s ≤ t, note that thanks to Exercise 4.2
and the fact that Mτn

t∧τ (Nτn
t −N

τn
t∧τ ) is 0 when τ ≥ t,

E [Mτn
t∧τ (Nτn

t −N
τn
t∧τ ) | Fs] = E [E [Mτn

τ (Nτn
t −Nτn

τ )1τ≤t | Fτ∨s] | Fs]
= E [Mτn

τ (Nτn
s∨τ −Nτn

τ )1τ≤t | Fs]
= E [Mτn

τ (Nτn
s −Nτn

τ )1τ≤s | Fs]
= Mτn

τ (Nτn
s −Nτn

τ )1τ≤s = Mτn
s∧τ (Nτn

s −Nτn
s∧τ ),

because, as seen in Exercise 4.2 if X ∈ Fτ , X1τ≤s ∈ Fs. Thus, Mτn
t∧τ (Nτn

t − N
τn
t∧τ ) is a

martingale, which let us conclude.
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Exercise 8.2 Let (Ω,G,Gt, P ) satisfying the usual conditions.

(a) Show that every continuous bounded local martingale is a martingale.

(b) Let 0 < T < ∞ be a deterministic time. Show that any nonnegative continuous local
martingale (Xt)t∈[0,T ] with E[X0] <∞ is also a supermartingale, and if

E[XT ] = E[X0],

then (Xt)t∈[0,T ] is a martingale.

Solution 8.2

(a) Without loss of generality, suppose (Xt)t≥0 is a local martingale with X0 = 0 and let B be a
constant such that |Xt| ≤ B for all t ≥ 0. Let (τk)k∈N be a localizing sequence for X, i.e. it is
a non decreasing sequence of stopping times such that (Xt∧τk

)t≥0 is a martingale for any k
and τk ↗ +∞ a.s. Fix s ≤ t, by the martingale property we have

E
[
Xt∧τk

∣∣Gs] = Xs∧τk
a.s.

By dominated convergence theorem, which we can apply by the uniform boundedness of X,
we get that

E
[
Xt

∣∣Gs] = lim
k→∞

E
[
Xt∧τk

∣∣Gs] = lim
k→∞

Xs∧τk
= Xs a.s.

(b) Let (τk)k∈N be a localizing sequence for X (see a) for the definition). Then, applying the
local martingale property, we have for any 0 ≤ s ≤ t ≤ T that

Xs∧τk
= E[Xt∧τk

|Gs] a.s.

Since X is nonnegative, we can apply Fatou’s lemma to get for any 0 ≤ s ≤ t ≤ T that

Xs = lim
k→∞

Xs∧τk
= lim inf

k→∞
E

[
Xt∧τk

∣∣Gs] ≥ E[
lim inf
k→∞

Xt∧τk

∣∣Gs] = E
[
Xt|Gs

]
a.s. (1)

Moreover as X is nonnegative, we obtain by applying Fatou’s Lemma that for any t ∈ [0, T ]

E
[
Xt

]
= E

[
lim inf
k→∞

Xt∧τk

]
≤ lim inf

k→∞
E

[
Xt∧τk

]
= E

[
X0

]
<∞

and so (Xt)t≥0 is a supermartingale.
Now, take the expectation on both sides in (1), we get

E[Xs] ≥ E[Xt]

for all 0 ≤ s ≤ t ≤ T. In particular, using monotonicity of the expectation for a supermartingale,
we have

E[X0] ≥ E[Xs] ≥ E[Xt] ≥ E[XT ] for all 0 ≤ s ≤ t ≤ T. (2)

Using the assumption E[XT ] = E[X0], we see that the previous inequalities in (2) are all
equalities. If the inequality in (1) was strict on a set of positive probability, we would have
E[Xs] > E[Xt], which gives a contradiction, and so the equality must hold with probability
one. Thus, X is a martingale.
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Exercise 8.3

(a) For any M ∈Mc
0,loc, define as usual M∗t := sup

0≤s≤t
|Ms| for t ≥ 0. Prove that for any t ≥ 0 and

C,K > 0, we have
P

[
M∗t > C

]
≤ 4K
C2 + P

[
〈M〉t > K

]
.

Hint: First stop M to make it bounded; then stop 〈M〉 and use the Tchebycheff and Doob
inequalities (remember that the constant in Doob’s inequality for fixed p > 1, denoted by Cp,
is equal to

(
p
p−1

)p).
Remark: Intuitively, this means that one can control the running supremum of M in terms
of the quadratic variation of M .

(b) Let M be a right-continuous local martingale null at 0. Show that there is a localizing
sequence (τn)n∈N such that Mτn is a uniformly integrable martingale for each n.

Solution 8.3

(a) For K > 0, we consider the stopping time σK := inf{t > 0|〈M〉t > K}. Since 〈M〉 is
continuous, we have that 〈M〉t ≤ K for t ≤ σK , and therefore

E
[
〈MσK 〉∞

]
= E

[
〈M〉σK

]
≤ K.

Hence, Exercise 8-1 a) gives that MσK ∈ H
2,c
0 . We can therefore apply Tchebycheff’s and

Doob’s inequality (and use that the constant in Doob’s inequality for fixed p > 1, denoted by
Cp, is equal to

(
p
p−1

)p), obtaining that

P
[
(MσK )∗t > C

]
≤
E

[
((MσK )∗t )2]

C2

≤
4E

[
(MσK )2

t

]
C2

=
4E

[
〈MσK 〉t

]
C2

≤ 4K
C2 .

To obtain the claim, we observe that

{MσK
t 6= Mt} ⊆ {σK < t} = {〈M〉t > K},

which finally implies that

P
[
M∗t > C

]
= P

[
M∗t > C, σK ≥ t

]
+ P

[
M∗t > C, σK < t

]
≤ 4K
C2 + P

[
〈M〉t > K

]
.

(b) Since M ∈M0,loc, there is a localizing sequence (σn)n∈N such that Mσn is a martingale for
each n. Consider the sequence of stopping times τn := σn ∧ n, n ≥ 0. By construction,
τn ↑ ∞ P -a.s. and Mτn = (Mσn)n is a martingale for each n due to Exercise 4.2. Moreover,
from the stopping theorem, as n ∧ σn is bounded, we have that Mτn∧t = E[Mn∧σn |Ft] for
every t ≥ 0. As Mn∧σn = E[Mn |Fn∧σn ] a.s., we see that Mn∧σn ∈ L1. Thus, we deduce the
uniform integrability of Mτn because for all t ≥ 0, |Mτn

t | ≤ |M∗τn
| and, thanks to the last part

|M∗τn
| is integrable.
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