Brownian Motion and Stochastic Calculus

Exercise sheet 8

 $Please hand in your solutions during exercise \ class \ or \ in \ your \ assistant's \ box \ in \ HG \ E65 \ no \ latter \ than \\ April \ 28th$

Exercise 8.1 Recall that for $M, N \in \mathcal{M}_{0,\text{loc}}^c$, the quadratic covariation process $\langle M, N \rangle$ is defined by

$$\langle M, N \rangle = \frac{1}{4} \left(\langle M + N \rangle - \langle M - N \rangle \right).$$

- 1. Show that $\langle M, N \rangle$ is the unique (up to indistiguishability) continuous process B of finite variation with $B_0 = 0$ such that $MN B \in \mathcal{M}^c_{0,\text{loc}}$. *Hint:* Use Proposition 4.(1.4) in the lecture notes. *Remark:* As an immediate consequence of a), $\langle \cdot, \cdot \rangle$ is bilinear.
- 2. Show that for any stopping time τ ,

$$\langle M^{\tau}, N \rangle = \langle M, N^{\tau} \rangle = \langle M, N \rangle^{\tau}$$

(again, up to indistinguishability).

Solution 8.1

- (a) It is clear that ⟨M, N⟩₀ = 0 and that ⟨M, N⟩ is of finite variation, given that is a sum of monotone processes. Note that the sum of local martingale is a local martingale. Then MN ¼ (⟨M + N⟩ ⟨M N⟩) is a local martingale because ¼MN = (M + N)² (M N)². To see that it is unique note that if B, B' are continuous processes of finite variation with B₀, B'₀ = 0 such that MN B and MN B' are martingales, note that (MN B) (MN B') = B B' is a martingale with finite variation. Proposition (1.4) implies that B = B'.
- (b) From (a) it is enough to show that $M^{\tau}N \langle M, N \rangle^{\tau} = (M^{\tau}N^{\tau} \langle M, N \rangle^{\tau}) + M^{\tau}(N N^{\tau})$ is a local martingale. The first term is a local martingale by definition so it is just enough to show that $M^{\tau}(N - N^{\tau})$ is a local martingale. For this take $\tau_n \nearrow \infty$ such that for all $n \in \mathbb{N}$, M^{τ_n} and N^{τ_n} are bounded martingales. Now, take $s \leq t$, note that thanks to Exercise 4.2 and the fact that $M^{\tau_n}_{t\wedge\tau}(N^{\tau_n}_t - N^{\tau_n}_{t\wedge\tau})$ is 0 when $\tau \geq t$,

$$\begin{split} \mathbb{E}\left[M_{t\wedge\tau}^{\tau_n}(N_t^{\tau_n}-N_{t\wedge\tau}^{\tau_n})\mid\mathcal{F}_s\right] &= \mathbb{E}\left[\mathbb{E}\left[M_{\tau}^{\tau_n}(N_t^{\tau_n}-N_{\tau}^{\tau_n})\mathbf{1}_{\tau\leq t}\mid\mathcal{F}_{\tau\vee s}\right]\mid\mathcal{F}_s\right] \\ &= \mathbb{E}\left[M_{\tau}^{\tau_n}(N_{s\vee\tau}^{\tau_n}-N_{\tau}^{\tau_n})\mathbf{1}_{\tau\leq t}\mid\mathcal{F}_s\right] \\ &= \mathbb{E}\left[M_{\tau}^{\tau_n}(N_s^{\tau_n}-N_{\tau}^{\tau_n})\mathbf{1}_{\tau\leq s}\mid\mathcal{F}_s\right] \\ &= M_{\tau}^{\tau_n}(N_s^{\tau_n}-N_{\tau}^{\tau_n})\mathbf{1}_{\tau\leq s} = M_{s\wedge\tau}^{\tau_n}(N_s^{\tau_n}-N_{s\wedge\tau}^{\tau_n}), \end{split}$$

because, as seen in Exercise 4.2 if $X \in \mathcal{F}_{\tau}$, $X\mathbf{1}_{\tau \leq s} \in \mathcal{F}_{s}$. Thus, $M_{t \wedge \tau}^{\tau_{n}}(N_{t}^{\tau_{n}} - N_{t \wedge \tau}^{\tau_{n}})$ is a martingale, which let us conclude.

Exercise 8.2 Let $(\Omega, \mathcal{G}, \mathcal{G}_t, P)$ satisfying the usual conditions.

- (a) Show that every continuous *bounded* local martingale is a martingale.
- (b) Let $0 < T < \infty$ be a deterministic time. Show that any nonnegative continuous local martingale $(X_t)_{t \in [0,T]}$ with $E[X_0] < \infty$ is also a supermartingale, and if

$$E[X_T] = E[X_0],$$

then $(X_t)_{t \in [0,T]}$ is a martingale.

Solution 8.2

(a) Without loss of generality, suppose $(X_t)_{t\geq 0}$ is a local martingale with $X_0 = 0$ and let B be a constant such that $|X_t| \leq B$ for all $t \geq 0$. Let $(\tau_k)_{k\in\mathbb{N}}$ be a localizing sequence for X, i.e. it is a non decreasing sequence of stopping times such that $(X_{t\wedge\tau_k})_{t\geq 0}$ is a martingale for any k and $\tau_k \nearrow +\infty$ a.s. Fix $s \leq t$, by the martingale property we have

$$E[X_{t\wedge\tau_k} \mid \mathcal{G}_s] = X_{s\wedge\tau_k}$$
 a.s

By dominated convergence theorem, which we can apply by the uniform boundedness of X, we get that

$$E[X_t \mid \mathcal{G}_s] = \lim_{k \to \infty} E[X_{t \land \tau_k} \mid \mathcal{G}_s] = \lim_{k \to \infty} X_{s \land \tau_k} = X_s \text{ a.s.}$$

(b) Let $(\tau_k)_{k \in \mathbb{N}}$ be a localizing sequence for X (see **a**) for the definition). Then, applying the local martingale property, we have for any $0 \le s \le t \le T$ that

$$X_{s \wedge \tau_k} = E[X_{t \wedge \tau_k} | \mathfrak{G}_s]$$
 a.s.

Since X is nonnegative, we can apply Fatou's lemma to get for any $0 \le s \le t \le T$ that

$$X_s = \lim_{k \to \infty} X_{s \wedge \tau_k} = \liminf_{k \to \infty} E\left[X_{t \wedge \tau_k} \mid \mathcal{G}_s\right] \ge E\left[\liminf_{k \to \infty} X_{t \wedge \tau_k} \mid \mathcal{G}_s\right] = E\left[X_t \mid \mathcal{G}_s\right] \quad \text{a.s.} \tag{1}$$

Moreover as X is nonnegative, we obtain by applying Fatou's Lemma that for any $t \in [0, T]$

$$E[X_t] = E\left[\liminf_{k \to \infty} X_{t \wedge \tau_k}\right] \le \liminf_{k \to \infty} E\left[X_{t \wedge \tau_k}\right] = E[X_0] < \infty$$

and so $(X_t)_{t>0}$ is a supermartingale.

Now, take the expectation on both sides in (1), we get

$$E[X_s] \ge E[X_t]$$

for all $0 \leq s \leq t \leq T.$ In particular, using monotonicity of the expectation for a supermartingale, we have

$$E[X_0] \ge E[X_s] \ge E[X_t] \ge E[X_T] \quad \text{for all } 0 \le s \le t \le T.$$
(2)

Using the assumption $E[X_T] = E[X_0]$, we see that the previous inequalities in (2) are all equalities. If the inequality in (1) was strict on a set of positive probability, we would have $E[X_s] > E[X_t]$, which gives a contradiction, and so the equality must hold with probability one. Thus, X is a martingale.

Exercise 8.3

(a) For any $M \in \mathcal{M}_{0,\text{loc}}^c$, define as usual $M_t^* := \sup_{0 \le s \le t} |M_s|$ for $t \ge 0$. Prove that for any $t \ge 0$ and C, K > 0, we have

$$P[M_t^* > C] \le \frac{4K}{C^2} + P[\langle M \rangle_t > K].$$

Hint: First stop M to make it bounded; then stop $\langle M \rangle$ and use the Tchebycheff and Doob inequalities (remember that the constant in Doob's inequality for fixed p > 1, denoted by C_p , is equal to $\left(\frac{p}{p-1}\right)^p$).

Remark: Intuitively, this means that one can control the running supremum of M in terms of the quadratic variation of M.

(b) Let M be a right-continuous local martingale null at 0. Show that there is a localizing sequence $(\tau_n)_{n \in \mathbb{N}}$ such that M^{τ_n} is a uniformly integrable martingale for each n.

Solution 8.3

(a) For K > 0, we consider the stopping time $\sigma_K := \inf\{t > 0 | \langle M \rangle_t > K\}$. Since $\langle M \rangle$ is continuous, we have that $\langle M \rangle_t \leq K$ for $t \leq \sigma_K$, and therefore

$$E[\langle M^{\sigma_K} \rangle_{\infty}] = E[\langle M \rangle_{\sigma_K}] \le K.$$

Hence, Exercise 8-1 a) gives that $M^{\sigma_{\kappa}} \in \mathcal{H}_{0}^{2,c}$. We can therefore apply Tchebycheff's and Doob's inequality (and use that the constant in Doob's inequality for fixed p > 1, denoted by C_p , is equal to $\left(\frac{p}{p-1}\right)^p$), obtaining that

$$P[(M^{\sigma_{\kappa}})_{t}^{*} > C] \leq \frac{E[((M^{\sigma_{\kappa}})_{t}^{*})^{2}]}{C^{2}}$$
$$\leq \frac{4E[(M^{\sigma_{\kappa}})_{t}^{2}]}{C^{2}}$$
$$= \frac{4E[\langle M^{\sigma_{\kappa}} \rangle_{t}]}{C^{2}}$$
$$\leq \frac{4K}{C^{2}}.$$

To obtain the claim, we observe that

$$\{M_t^{\sigma_K} \neq M_t\} \subseteq \{\sigma_K < t\} = \{\langle M \rangle_t > K\},\$$

which finally implies that

$$P[M_t^* > C] = P[M_t^* > C, \sigma_K \ge t] + P[M_t^* > C, \sigma_K < t]$$
$$\leq \frac{4K}{C^2} + P[\langle M \rangle_t > K].$$

(b) Since $M \in \mathcal{M}_{0,loc}$, there is a localizing sequence $(\sigma_n)_{n \in \mathbb{N}}$ such that M^{σ_n} is a martingale for each n. Consider the sequence of stopping times $\tau_n := \sigma_n \wedge n, n \geq 0$. By construction, $\tau_n \uparrow \infty P$ -a.s. and $M^{\tau_n} = (M^{\sigma_n})^n$ is a martingale for each n due to Exercise 4.2. Moreover, from the stopping theorem, as $n \wedge \sigma_n$ is bounded, we have that $M_{\tau_n \wedge t} = E[M_{n \wedge \sigma_n} | \mathcal{F}_t]$ for every $t \geq 0$. As $M_{n \wedge \sigma_n} = E[M_n | \mathcal{F}_{n \wedge \sigma_n}]$ a.s., we see that $M_{n \wedge \sigma_n} \in \mathcal{L}^1$. Thus, we deduce the uniform integrability of M^{τ_n} because for all $t \geq 0$, $|M_t^{\tau_n}| \leq |M_{\tau_n}^*|$ and, thanks to the last part $|M_{\tau_n}^*|$ is integrable.