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Exercise 9.1 For M € Mg ., we denote by L? (M) the space of all predictable processes for

loc
which there is a sequence of stopping times 7,, T oo P-a.s. such that E[ OT" H? d(M)s} < oo for
any n.

(a) Let H be predictable. Show that

¢
He L} (M) < / H?d(M), < oo P-as. for each t > 0.
0

(b) Show that for any continuous semimartingale X, any adapted RCLL process H and any
sequence of partitions (IL,)nen of [0,00) with lim |II,,| = 0, we have
n—oo

t
/ H,_dX,= lim Z Hy, (X¢, . ae — Xy,)  in probability.
0 e t;<t,t;€ll,

(c¢) Find an adapted process with RCLL paths which is not locally bounded.

Solution 9.1
(a) (=) Let H € L} (M) and let (7, )nen be the corresponding localizing sequence. By definition,

loc
we have for each n that

P[/ CHZA(M), < 00| =1
0

Fix any ¢t > 0. We see that for each n € N, we have

P{/JHEd(M)S :oo}

_ p{{/otHEdW)S = oo n{r gt}} +P[{/OtH§d<M>s = oo n{r, >t}]
7 < 1] +P[{ / H2d(M), = oo} 1 {7 > t}}

< Plr, <1 +P[/OT" HE (M), = o]

IN
T

= P[Tn < t].
Thus, we conclude that
t
P[/ H2 d(M), = 00| < lim P[r, <¢] =0.
0 n—oo

(<) Let H be predictable such that

¢
/ H?d(M),; < oo P-as. for each t > 0. (1)
0
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Consider the sequence of stopping times (7,,)nen defined by

Tn = inf{tEO‘ /tHSQd<M>S >n}.
0

Due to (1), we obtain that 7,, T co P-a.s. Moreover, due to the definition of 7,, and the
(left)-continuity of [ H d(M), we have for each n

E{/Omﬂfcz(M)s} <n <oo.

For each n, set
H" := Z H;, Lt tipa)
t; €lly,
By definition, we obtain that for each ¢t > 0,

t
(H™ - X), ;:/ H'dX,= Y Hy (X0 — Xe)
0

ts<t,t;cll,

Set H™ := H™ — H_. Being left-continuous and adapted, each H™ and H_ are locally bounded
and thus each H" is locally bounded, too. Moreover, H™ — 0 pointwise on € x [0,00) as
n — 00. Let ¢ > 0 and N € N such that |H"| < e for all n > N. Then, we have

|H™| <e+ max |FH™,
n=1,...,

which is locally bounded. Thus we can apply Theorem 4.2.19 of the script to derive that for
each t > 0,
lim sup ’(ﬂ{" . X)S| =0 in probability.

n—o0 0<s<t

Thus, we obtain the result directly from the definition of H™.

Let (Q,F, P) be probability space such that there is a random variable U ~ N(0, 1) which is
F-measurable. Fix any u > 0 and consider the process

Xy = Ulpo0)(t), t>0.

Moreover, we let F be the filtration generated by the process X. By construction, X is
right-continuous and F-adapted. Assume that X is locally bounded. Then, as |AX,| <
28Upepo,] | Xt|, we conclude that |AX,| < C' P-as. for some constant C by the locally
boundedness of X. But by definition of X, this means that |U| < C P-a.s. which gives a
contradiction as U ~ N(0, 1).
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Exercise 9.2 Consider a filtered probability space (Q, F, (F;)>0, P) satisfying the usual conditions
and let 0 < 7 be two stopping times. Moreover, let Z be a bounded, F,-measurable random
variable. The goal of this exercise is to compute the stochastic integral process [ Z 1}o,77 dM for an
integrator M € Mg ...

(a)

For a (uniformly integrable) right-continuous martingale X = (X;);>0, show that the process
Z (X7 — X7) is again a (uniformly integrable) right-continuous martingale.

Hint: Use Lemma 4.1.19 from the lecture notes to show the assertion first for Z of the form
Z =14 for some A € F,. Then extend the result to general Z.

Let M, N € Mg ),.. Show that
(Z(M™ — M°),N)=Z(M"™ — M° ,N) =Z((M,N)™ — (M, N)?).
Let M € M§ . and set H := Z1, ;). Show that H € L7, (M) and
/HdM =Z(M™ — M?).
Conclude that if M is a (uniformly integrable) martingale, then the stochastic integral [ H dM

is also a (uniformly integrable) martingale.
Remark: The last statement is not true for arbitrary bounded H € L (M).

loc

Solution 9.2

(a)

Let X = (X¢)¢>0 be a uniformly integrable, right-continuous martingale. Set Y := Z(X7 — X7)
and fix a stopping time p. We will show that E|Y,|] < oo and E[Y,] = 0. The assertion then
follows from Lemma 4.1.19 in the lecture notes.

Since X is uniformly integrable, the stopping theorem yields E[X|F,] = X, for any stopping
time ~y. In particular, the family {X, : v a stopping time} is uniformly integrable (i.e., X is
of class (D)), hence bounded in L'. Tt follows that

E[[Y,|] < CE[Xrnpl] + E[|Xonpl]) < o0

where C' > 0 is any constant bounding Z.

Next, we show that E[Y,] = 0. By a monotone class argument or simply measure-theoretic
induction, we may assume that Z = 14 for some A € F,. Then 74 := 714 + 00l 4 and
o4 =0l + 00l 4c are stopping times and

E[Yp] == E[IA(Xp/\T - Xp/\o’)] - E[Xp/\TA - Xp/\O'A] - 07

where we use the stopping theorem in the last equality.

If X is not uniformly integrable, then assuming that p is bounded, almost the same proof
yields that Y is a martingale (but not uniformly integrable in general), c.f. Remark 4.(1.20)
in the lecture notes.

The equality B := Z(M™ — M°,N) = Z((M,N)™ — (M, N)?) follows from bilinearity of (-, -)
and from the fact that for any stopping time 7,

(M7 N) = (M,NT) = (M,N)".

Next, we note that Y := Z(M™ — M?) € Mg, by part a) and localisation. So (Y, N) is
well-defined. We also note that the process B is continuous and of finite variation. Moreover,
since B = 0 on [0, 0], we can write B = (Z1}4,00])((M, N)™ — (M, N)?) to see that B is also
adapted.
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Setting X := (M7 — M?)N — (M™ — M?,N) € Mg . and noting that X = 0, we have
YN —B=2Z((M" — M°)N — (M™ — M?,N)) = Z(X — X°).

By part a) and localisation, Z(X — X7) € Mg .. Thus, as (Y, N) is the unique process B of
¢FV, such that MN — B € MG 10> We conclude by uniqueness that (Y, N) = B.

(c) Clearly, H := Z1j, ;] is left-continuous. Moreover for ¢ > 0, the second factor in H; =
(Z145<3)1{¢<ry is Fp-measurable since 7 is a stopping time, while the J;-measurability of
the first factor follows from 4-3 c) via measure-theoretic induction. Thus, H is adapted and
hence predictable. Since H is also bounded, it follows that H € L (M).

loc

Now for any N € M we have

0,loc»

(Z(MT — M), Ny 2 Z((M, N)" — (M, N)°) = /21]](”]] d(M,N) = /Hd(M, N).

Thus by the defining property of the stochastic integral, [ HdM = Z(MT™ — M?).

Finally, from part a), we see that if M is a (uniformly integrable) martingale, then [ H dM =
Z(MT™ — M°?) is a (uniformly integrable) martingale.
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Exercise 9.3 Let (B;):>0 be a Brownian motion. Fix any 0 < T' < oo and let f € L([0,7]) be a
deterministic function. For any 0 < a < b < T we set

b
Jap ::/ f(s)dB

Moreover, for any ¢ € [0,T], we denote J¢ := Jo ;-

(a) Show that the process J := (Jap)o<a<b<T is a centered Gaussian process and calculate its
covariance function.

(b) Show that the process (d¢):e[o,7) has the same law as the process Y := (Y;)c(o,7] defined by

= Bfot fz(s)d
Solution 9.3

(a) Note that -.B is an isometry of £2. Thus,

bAD

E[dapdarp] = 1{a\/a'§b/\b’}/ f(s)%ds

aVa'

Noting that J; is a local martingale such that E [Hf] < oo we have that E[Jq5] = 0.

To see that it is a Gaussian process we start by taking f to be a continuous function.
Using Exercise 9.1 (b) we know that if f is continuous, and if (I1,,),en is a partition with
lim,, o0 |II,| = 0 we have that

/ f B, = hm Z f(ti)(BtiJrl - BtL)
* ti<ttel,n
Thus, thanks to Problem 3.3 if f is continuous ZZ 1A 3a1 b; @ normal random variable. Due

to the fact that -.B is an isometry we have that if f,, —> I, then Jop(fn) = Jap(f) in L2(Q).
Thus, due to the fact that continuous function are dense in £2([0, 7)), if f € LQ([O, T]), there

2 2
exists f, continuous functions such that f, £, f thus Zivzl Xiba; b; (fn) £, Zf\il Xida; b ().

Again by Problem 3.3, vazl Xida; p:(f) is a normal random variable. Thus, J, 5 is a Gaussian
process.

(b) By the previous exercise, we know that for any ¢ > 0, E[J:] = 0. For g(¢ fo f2(s) ds, it is
clear that the process Y := (Y;)¢cjo,7] defined by

Yy := By

is a Gaussian process with E[Y;] = 0 for any ¢ > 0 as Brownian motion is. Moreover, for any
s,t € [0,T], due to the Covariance property of Brownian motion, we obtain that

Cov(By(s).gty) = min (g(s), g(t)) = E[dsde].

We conclude that the processes J and Y are both Gaussian processes with same expectations
and Covariance functions, thus have the same finite dimensional marginal distributions.
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