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Exercise 9.1 For M ∈ Mc
0,loc, we denote by L2

loc(M) the space of all predictable processes for
which there is a sequence of stopping times τn ↑ ∞ P -a.s. such that E

[ ∫ τn

0 H2
s d〈M〉s

]
< ∞ for

any n.

(a) Let H be predictable. Show that

H ∈ L2
loc(M) ⇐⇒

∫ t

0
H2
s d〈M〉s <∞ P -a.s. for each t ≥ 0.

(b) Show that for any continuous semimartingale X, any adapted RCLL process H and any
sequence of partitions (Πn)n∈N of [0,∞) with lim

n→∞
|Πn| = 0, we have∫ t

0
Hs− dXs = lim

n→∞

∑
ti≤t,ti∈Πn

Hti (Xti+1∧t −Xti) in probability.

(c) Find an adapted process with RCLL paths which is not locally bounded.

Solution 9.1

(a) (⇒) Let H ∈ L2
loc(M) and let (τn)n∈N be the corresponding localizing sequence. By definition,

we have for each n that
P
[ ∫ τn

0
H2
s d〈M〉s <∞

]
= 1

Fix any t ≥ 0. We see that for each n ∈ N, we have

P
[ ∫ t

0
H2
s d〈M〉s =∞

]
= P

[{∫ t

0
H2
s d〈M〉s =∞

}
∩
{
τn ≤ t

}]
+ P

[{∫ t

0
H2
s d〈M〉s =∞

}
∩
{
τn > t

}]
≤ P

[
τn ≤ t

]
+ P

[{∫ τn

0
H2
s d〈M〉s =∞

}
∩
{
τn > t

}]
≤ P

[
τn ≤ t

]
+ P

[ ∫ τn

0
H2
s d〈M〉s =∞

]
= P

[
τn ≤ t

]
.

Thus, we conclude that

P
[ ∫ t

0
H2
s d〈M〉s =∞

]
≤ lim
n→∞

P
[
τn ≤ t

]
= 0.

(⇐) Let H be predictable such that∫ t

0
H2
s d〈M〉s <∞ P -a.s. for each t ≥ 0. (1)
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Consider the sequence of stopping times (τn)n∈N defined by

τn := inf
{
t ≥ 0

∣∣∣ ∫ t

0
H2
s d〈M〉s > n

}
.

Due to (1), we obtain that τn ↑ ∞ P -a.s. Moreover, due to the definition of τn and the
(left)-continuity of

∫
H d〈M〉, we have for each n

E

[ ∫ τn

0
H2
s d〈M〉s

]
≤ n <∞.

(b) For each n, set
Hn :=

∑
ti∈Πn

Hti 1(ti,ti+1].

By definition, we obtain that for each t ≥ 0,

(Hn ·X)t :=
∫ t

0
Hn
s dXs =

∑
ti≤t,ti∈Πn

Hti (Xti+1∧t −Xti).

Set Hn := Hn−H−. Being left-continuous and adapted, each Hn and H− are locally bounded
and thus each Hn is locally bounded, too. Moreover, Hn → 0 pointwise on Ω × [0,∞) as
n→∞. Let ε > 0 and N ∈ N such that |Hn| ≤ ε for all n ≥ N . Then, we have

|Hn| ≤ ε+ max
n=1,...,N

|Hn|,

which is locally bounded. Thus we can apply Theorem 4.2.19 of the script to derive that for
each t ≥ 0,

lim
n→∞

sup
0≤s≤t

∣∣(Hn ·X)s
∣∣ = 0 in probability.

Thus, we obtain the result directly from the definition of Hn.

(c) Let (Ω,F, P ) be probability space such that there is a random variable U ∼ N(0, 1) which is
F-measurable. Fix any u > 0 and consider the process

Xt := U 1[u,∞)(t), t ≥ 0.

Moreover, we let F be the filtration generated by the process X. By construction, X is
right-continuous and F-adapted. Assume that X is locally bounded. Then, as |∆Xu| ≤
2 supt∈[0,u] |Xt|, we conclude that |∆Xu| ≤ C P -a.s. for some constant C by the locally
boundedness of X. But by definition of X, this means that |U | ≤ C P -a.s. which gives a
contradiction as U ∼ N(0, 1).
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Exercise 9.2 Consider a filtered probability space (Ω,F, (Ft)t≥0, P ) satisfying the usual conditions
and let σ ≤ τ be two stopping times. Moreover, let Z be a bounded, Fσ-measurable random
variable. The goal of this exercise is to compute the stochastic integral process

∫
Z1]]σ,τ ]] dM for an

integrator M ∈Mc
0,loc.

(a) For a (uniformly integrable) right-continuous martingale X = (Xt)t≥0, show that the process
Z(Xτ −Xσ) is again a (uniformly integrable) right-continuous martingale.
Hint: Use Lemma 4.1.19 from the lecture notes to show the assertion first for Z of the form
Z = 1A for some A ∈ Fσ. Then extend the result to general Z.

(b) Let M,N ∈Mc
0,loc. Show that

〈Z(Mτ −Mσ), N〉 = Z〈Mτ −Mσ, N〉 = Z(〈M,N〉τ − 〈M,N〉σ).

(c) Let M ∈Mc
0,loc and set H := Z1]]σ,τ ]]. Show that H ∈ L2

loc(M) and∫
H dM = Z(Mτ −Mσ).

Conclude that ifM is a (uniformly integrable) martingale, then the stochastic integral
∫
H dM

is also a (uniformly integrable) martingale.
Remark: The last statement is not true for arbitrary bounded H ∈ L2

loc(M).

Solution 9.2

(a) LetX = (Xt)t≥0 be a uniformly integrable, right-continuous martingale. Set Y := Z(Xτ −Xσ)
and fix a stopping time ρ. We will show that E[|Yρ|] <∞ and E[Yρ] = 0. The assertion then
follows from Lemma 4.1.19 in the lecture notes.
Since X is uniformly integrable, the stopping theorem yields E[X∞|Fγ ] = Xγ for any stopping
time γ. In particular, the family {Xγ : γ a stopping time} is uniformly integrable (i.e., X is
of class (D)), hence bounded in L1. It follows that

E[|Yρ|] ≤ C(E[|Xτ∧ρ|] + E[|Xσ∧ρ|]) <∞

where C > 0 is any constant bounding Z.
Next, we show that E[Yρ] = 0. By a monotone class argument or simply measure-theoretic
induction, we may assume that Z = 1A for some A ∈ Fσ. Then τA := τ1A +∞1Ac and
σA := σ1A +∞1Ac are stopping times and

E[Yρ] = E[1A(Xρ∧τ −Xρ∧σ)] = E[Xρ∧τA
−Xρ∧σA

] = 0,

where we use the stopping theorem in the last equality.
If X is not uniformly integrable, then assuming that ρ is bounded, almost the same proof
yields that Y is a martingale (but not uniformly integrable in general), c.f. Remark 4.(1.20)
in the lecture notes.

(b) The equality B := Z〈Mτ −Mσ, N〉 = Z(〈M,N〉τ − 〈M,N〉σ) follows from bilinearity of 〈·, ·〉
and from the fact that for any stopping time τ ,

〈Mτ , N〉 = 〈M,Nτ 〉 = 〈M,N〉τ .

Next, we note that Y := Z(Mτ −Mσ) ∈ Mc
0,loc by part a) and localisation. So 〈Y,N〉 is

well-defined. We also note that the process B is continuous and of finite variation. Moreover,
since B = 0 on [[0, σ]], we can write B = (Z1]]σ,∞]])(〈M,N〉τ − 〈M,N〉σ) to see that B is also
adapted.

Updated: May 8, 2017 3 / 5



Brownian Motion and Stochastic Calculus, Spring 2017
D-MATH Exercise sheet 9

Setting X := (Mτ −Mσ)N − 〈Mτ −Mσ, N〉 ∈Mc
0,loc and noting that Xσ = 0, we have

Y N −B = Z((Mτ −Mσ)N − 〈Mτ −Mσ, N〉) = Z(X −Xσ).

By part a) and localisation, Z(X −Xσ) ∈Mc
0,loc. Thus, as 〈Y,N〉 is the unique process B̃ of

cFV0 such that MN − B̃ ∈Mc
0,loc, we conclude by uniqueness that 〈Y,N〉 = B.

(c) Clearly, H := Z1]]σ,τ ]] is left-continuous. Moreover for t ≥ 0, the second factor in Ht =
(Z1{σ<t})1{t≤τ} is Ft-measurable since τ is a stopping time, while the Ft-measurability of
the first factor follows from 4-3 c) via measure-theoretic induction. Thus, H is adapted and
hence predictable. Since H is also bounded, it follows that H ∈ L2

loc(M).
Now for any N ∈Mc

0,loc, we have

〈Z(Mτ −Mσ), N〉 b)= Z(〈M,N〉τ − 〈M,N〉σ) =
∫
Z1]]σ,τ ]] d〈M,N〉 =

∫
H d〈M,N〉.

Thus by the defining property of the stochastic integral,
∫
H dM = Z(Mτ −Mσ).

Finally, from part a), we see that if M is a (uniformly integrable) martingale, then
∫
H dM =

Z(Mτ −Mσ) is a (uniformly integrable) martingale.
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Exercise 9.3 Let (Bt)t≥0 be a Brownian motion. Fix any 0 < T <∞ and let f ∈ L2([0, T ]) be a
deterministic function. For any 0 ≤ a < b ≤ T we set

Ja,b :=
∫ b

a

f(s) dBs.

Moreover, for any t ∈ [0, T ], we denote Jt := J0,t.

(a) Show that the process J := (Ja,b)0≤a≤b≤T is a centered Gaussian process and calculate its
covariance function.

(b) Show that the process (Jt)t∈[0,T ] has the same law as the process Y := (Yt)t∈[0,T ] defined by

Yt := B∫ t

0
f2(s) ds.

Solution 9.3

(a) Note that ·.B is an isometry of L2. Thus,

E [Ja,bJa′,b′ ] = 1{a∨a′≤b∧b′}

∫ b∧b′

a∨a′
f(s)2ds

Noting that Jt is a local martingale such that E
[
J2
t

]
<∞ we have that E [Ja,b] = 0.

To see that it is a Gaussian process we start by taking f to be a continuous function.
Using Exercise 9.1 (b) we know that if f is continuous, and if (Πn)n∈N is a partition with
limn→∞ |Πn| = 0 we have that

Ja,b =
∫ b

a

f(s)dBs = lim
n→∞

∑
ti≤t,ti∈Πnn

f(ti)(Bti+1 −Bti).

Thus, thanks to Problem 3.3 if f is continuous
∑N
i=1 λiJai,bi

a normal random variable. Due
to the fact that ·.B is an isometry we have that if fn

L2

→ f , then Ja,b(fn)→ Ja,b(f) in L2(Ω).
Thus, due to the fact that continuous function are dense in L2([0, T ]), if f ∈ L2([0, T ]), there
exists fn continuous functions such that fn

L2

→ f thus
∑N
i=1 λiJai,bi(fn) L2

→
∑N
i=1 λiJai,bi(f).

Again by Problem 3.3,
∑N
i=1 λiJai,bi

(f) is a normal random variable. Thus, Ja,b is a Gaussian
process.

(b) By the previous exercise, we know that for any t ≥ 0, E[Jt] = 0. For g(t) :=
∫ t

0 f
2(s) ds, it is

clear that the process Y := (Yt)t∈[0,T ] defined by

Yt := Bg(t)

is a Gaussian process with E[Yt] = 0 for any t ≥ 0 as Brownian motion is. Moreover, for any
s, t ∈ [0, T ], due to the Covariance property of Brownian motion, we obtain that

Cov
(
Bg(s),g(t)

)
= min

(
g(s), g(t)

)
= E[JsJt].

We conclude that the processes J and Y are both Gaussian processes with same expectations
and Covariance functions, thus have the same finite dimensional marginal distributions.
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