Introduction to Mathematical Finance

Exercise sheet 1

Exercise 1.1 Let (Ω, \mathcal{F}, P) be a probability space and $X: \Omega \rightarrow \mathbb{R}$ a random variable with $X \geq 0$ P-a.s.. Prove that $E[X]=0$ implies that $X=0 P$-a.s..

Exercise 1.2 Let (Ω, \mathcal{F}, P) be the probability space with $\Omega:=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}, \mathcal{F}:=2^{\Omega}$ and P defined by $P\left[\left\{\omega_{1}\right\}\right]:=0.5$ and $P\left[\left\{\omega_{3}\right\}\right]:=0.2$. Let $X: \Omega \rightarrow \mathbb{R}$ be the random variable defined by $X\left(\omega_{1}\right):=12, X\left(\omega_{2}\right):=-4$ and $X\left(\omega_{3}\right):=-8$ and $\mathcal{G}:=\left\{\emptyset,\left\{\omega_{1}\right\},\left\{\omega_{2}, \omega_{3}\right\}, \Omega\right\}$ a sub- σ-field of \mathcal{F}.
(a) What is $P\left[\left\{\omega_{2}\right\}\right]$?
(b) Think of X as the price change over one week of a Facebook share. Give a verbal description of the set $A:=\left\{\omega_{2}, \omega_{3}\right\}$ in terms of X.
(c) Calculate the conditional expectation $E[X \mid \mathcal{G}]$.
(d) Find all probability measures Q that are equivalent to P on \mathcal{F} and satisfy

$$
E_{Q}[X]=4
$$

where $E_{Q}[\cdot]$ denotes the expectation under Q.

Exercise 1.3 Black Scholes closed formula

Let U_{i} iid $\sim N(0,1)$ and

$$
S_{n}=e^{\left(r-\frac{\sigma^{2}}{2}\right) n+\sigma \sum_{i=1}^{n} U_{i}}
$$

for $0 \leq n \leq N$. Given the filtration $\mathcal{F}_{n}=\sigma\left(S_{0}, \ldots, S_{n}\right)$, show that

$$
E\left[e^{-r(N-n)}\left(S_{N}-K\right)_{+} \mid \mathcal{F}_{n}\right]=S_{n} N\left(d_{1}\right)-K e^{-r(N-n)} N\left(d_{2}\right)
$$

where $N(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y$, is the cumulative distribution function of a standard normal variable.

$$
\begin{aligned}
& d_{1}=\frac{\ln \left(\frac{S_{n}}{K}\right)+\left(r+\frac{1}{2} \sigma^{2}\right) \theta}{\sigma \sqrt{\theta}} \\
& d_{2}=d_{1}-\sigma \sqrt{\theta}
\end{aligned}
$$

where $\theta=N-n$. This is the so-called Black Scholes formula for a call option. The price of an European call option at time n is $\operatorname{Call}\left(N-n, S_{n}, K, r, \sigma\right)=E\left[e^{-r(N-n)} f\left(S_{N}\right) \mid \mathcal{F}_{n}\right]$, the payoff of a call option is $f\left(S_{N}\right)=\left(S_{N}-K\right)_{+}$.

Exercise 1.4 Python - Black Scholes closed formula Write the function that compute the Black Scholes closed formula of a call option where (maturity, spot, strike, rate, vol) $=\left(N-n, S_{n}\right.$, $K, r, \sigma)$.

```
from math import exp, log, sqrt
from scipy.stats import norm
def call_closed_formula(maturity, spot, strike, rate, vol):
    # TODO: implement.
    return 0
```

