Introduction to Mathematical Finance
 Solution sheet 1

Solution 1.1 Since $X \geq 0 P$-a.s., it is sufficient to show that $P[X>0]=0$. Since for all $n \in \mathbb{N}$ we have the inequality

$$
\mathbb{1}_{\left\{X \geq \frac{1}{n}\right\}} \leq n X
$$

we conclude by taking on both sides expectation that

$$
P\left[X \geq \frac{1}{n}\right] \leq n E[X]=0
$$

by assumption. But since $\{X>0\}$ is the increasing union of all $\left\{X \geq \frac{1}{n}\right\}, n \in \mathbb{N}$, i.e., $\{X>0\}=$ $\cup_{n=1}^{\infty}\left\{X \geq \frac{1}{n}\right\}$ with $\mathbb{1}_{\{X>0\}}=\lim _{n \rightarrow \infty} \mathbb{1}_{\left\{X \geq \frac{1}{n}\right\}} P$-a.s., the monotone convergence theorem yields that

$$
P[X>0]=\lim _{n \rightarrow \infty} P\left[X \geq \frac{1}{n}\right]=0
$$

Solution 1.2

(a) By definition of a probability measure, we must have $P[\Omega]=1$. Thus, $P\left[\left\{\omega_{2}\right\}\right]=1-P\left[\left\{\omega_{1}\right\}\right]-P\left[\left\{\omega_{3}\right\}\right]=0.3$.
(b) $A=\left\{\omega_{2}, \omega_{3}\right\}=\{X=-4$ or $X=-8\}$ is the event that the share becomes cheaper.
(c) Denote $A:=\left\{\omega_{1}\right\}$. Then $\mathcal{G}=\sigma\left(A, A^{c}\right)$. This means that \mathcal{G} is generated by two disjoint sets. Hence the conditional expectation takes the form

$$
E[X \mid \mathcal{G}]=\frac{E\left[X \mathbb{1}_{A}\right]}{P[A]} \mathbb{1}_{A}+\frac{E\left[X \mathbb{1}_{A^{\mathrm{c}}}\right]}{P\left[A^{\mathrm{c}}\right]} \mathbb{1}_{A^{\mathrm{c}}}
$$

Since $\frac{E\left[X \mathbb{1}_{A}\right]}{P[A]}=12$ and

$$
\frac{E\left[X \mathbb{1}_{A^{c}}\right]}{P\left[A^{c}\right]}=\frac{1}{0.5}\left(-4 P\left[\left\{\omega_{2}\right\}\right]-8 P\left[\left\{\omega_{3}\right\}\right]\right)=-5.6
$$

we obtain the explicit representation

$$
E[X \mid \mathcal{G}]=12 \times \mathbb{1}_{A}-5.6 \times \mathbb{1}_{A^{c}}= \begin{cases}12 & \text { on }\left\{\omega_{1}\right\} \\ -5.6 & \text { on }\left\{\omega_{2}, \omega_{3}\right\}\end{cases}
$$

(d) We first note that $Q \approx P$ if and only if $q_{k}:=Q\left[\left\{\omega_{k}\right\}\right]>0$ for $k=1,2,3$. Thus an equivalent probability measure can be identified with a triplet $\left(q_{1}, q_{2}, q_{3}\right)$ of strictly positive real numbers whose sum is one. Computing the Q-expectation yields

$$
E_{Q}[X]=12 q_{1}-4 q_{2}-8 q_{3}
$$

Thus, the set of equivalent probability measures Q for which $4=E_{Q}[X]$ holds can be represented by the solution of the linear system

$$
\begin{cases}3 q_{1}-q_{2}-2 q_{3}-1 & =0 \\ q_{1}+q_{2}+q_{3}-1 & =0 \\ q_{1}, q_{2}, q_{3} & >0\end{cases}
$$

The solution to this is given by

$$
\left\{\begin{array}{l}
q_{1}=\frac{1}{4}(\lambda+2) \\
q_{2}=\frac{1}{4}(2-5 \lambda) \\
q_{3}=\lambda \in\left(0, \frac{2}{5}\right)
\end{array}\right.
$$

Solution 1.3 Black Scholes closed formula

$$
\mathbb{E}\left[e^{-r(N-n)}\left(S_{N}-K\right)_{+} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[\left.e^{-r(N-n)} S_{n}\left(\frac{S_{N}}{S_{n}}-\frac{K}{S_{n}}\right)_{+} \right\rvert\, \mathcal{F}_{n}\right]
$$

As $\frac{S_{N}}{S_{n}}=e^{\left(r-\frac{\sigma^{2}}{2}\right)(N-n)+\sigma \sum_{i=n+1}^{N} U_{i}}$ is independent of \mathcal{F}_{n}, we get :

$$
\mathbb{E}\left[\left.e^{-r(N-n)} S_{n}\left(\frac{S_{N}}{S_{n}}-\frac{K}{S_{n}}\right)_{+} \right\rvert\, \mathcal{F}_{n}\right]=\varphi\left(S_{n}\right)
$$

where

$$
\begin{aligned}
\varphi(x) & =\mathbb{E}\left[e^{-r(N-n)} x\left(\frac{S_{N}}{S_{n}}-\frac{K}{x}\right)_{+}\right] \\
& =\mathbb{E}\left[e^{-r(N-n)}\left(x \frac{S_{N}}{S_{n}}-K\right)_{+}\right]
\end{aligned}
$$

We replace $\frac{S_{N}}{S_{n}}$ and we get:

$$
\varphi(x)=\mathbb{E}\left[e^{-r(N-n)}\left(x e^{\left(r-\frac{\sigma^{2}}{2}\right)(N-n)+\sigma \sum_{i=n+1}^{N} U_{i}}-K\right)_{+}\right]
$$

As U_{i} are iid $\sim N(0,1)$, then $\sum_{i=n+1}^{N} U_{i} \sim N(0, N-n)$.

$$
\varphi(x)=\mathbb{E}\left[e^{-r(N-n)}\left(x e^{\left(r-\frac{\sigma^{2}}{2}\right)(N-n)+\sigma \sqrt{N-n} U_{1}}-K\right)_{+}\right]
$$

Then we will use $(a-b)_{+}=(a-b) 1_{a>b}$. Let call $\theta=N-n$.

$$
\begin{aligned}
x e^{\left(r-\frac{\sigma^{2}}{2}\right) \theta+\sigma \sqrt{\theta} U_{1}}>K & \Leftrightarrow\left(r-\frac{\sigma^{2}}{2}\right) \theta+\sigma \sqrt{\theta} U_{1}>\log \left(\frac{K}{x}\right) \\
& \Leftrightarrow \sigma \sqrt{\theta} U_{1}>\log \left(\frac{K}{x}\right)-\left(r-\frac{\sigma^{2}}{2}\right) \theta \\
& \Leftrightarrow U_{1}>-\frac{\log \left(\frac{x}{K}\right)+\left(r-\frac{\sigma^{2}}{2}\right) \theta}{\sigma \sqrt{\theta}}:=-d_{2}
\end{aligned}
$$

So we have:

$$
\begin{aligned}
\varphi(x) & =\mathbb{E}\left[e^{-r \theta}\left(x e^{\left(r-\frac{\sigma^{2}}{2}\right) \theta+\sigma \sqrt{\theta} U_{1}}-K\right) 1_{\left(U_{1}>-d_{2}\right)}\right] \\
& =\mathbb{E}\left[x e^{-\frac{\sigma^{2}}{2} \theta+\sigma \sqrt{\theta} U_{1}} 1_{\left(U_{1}>-d_{2}\right)}-e^{-r \theta} K 1_{\left(U_{1}>-d_{2}\right)}\right] \\
& =x \mathbb{E}\left[e^{-\frac{\sigma^{2}}{2} \theta} e^{\sigma \sqrt{\theta} U_{1}} 1_{\left(U_{1}>-d_{2}\right)}\right]-e^{-r \theta} K \mathbb{P}\left[U_{1}>-d_{2}\right]
\end{aligned}
$$

The first term can be written:

$$
\begin{aligned}
\mathbb{E}\left[e^{-\frac{\sigma^{2}}{2} \theta} e^{\sigma \sqrt{\theta} U_{1}} 1_{\left(U_{1}>-d_{2}\right)}\right] & =\int_{\mathbb{R}} e^{-\frac{\sigma^{2}}{2} \theta} e^{\sigma \sqrt{\theta} y} 1_{y>-d_{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y \\
& =\int_{\mathbb{R}} 1_{\left(y>-d_{2}\right)} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(y-\sigma \sqrt{\theta})^{2}}{2}} d y \\
& =\int_{\mathbb{R}} 1_{\left(z>-\left(d_{2}+\sigma \sqrt{\theta}\right)\right)} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z \\
& =\mathbb{P}\left[U_{1}>-\left(d_{2}+\sigma \sqrt{\theta}\right)\right]=\mathbb{P}\left[U_{1}>-d_{1}\right]
\end{aligned}
$$

As $U_{1} \sim N(0,1), \mathbb{P}\left[U_{1}>-d_{1}\right]=\mathbb{P}\left[U_{1} \leq d_{1}\right]$, we have:

$$
\begin{aligned}
\varphi(x) & =x \mathbb{P}\left[U_{1}>-d_{1}\right]-e^{-r \theta} K \mathbb{P}\left[U_{1}>-d_{2}\right] \\
& =x \mathbb{P}\left[U_{1} \leq d_{2}+\sqrt{\theta}\right]-e^{-r \theta} K \mathbb{P}\left[U_{1} \leq d_{2}\right] \\
& =x N\left(d_{1}\right)-e^{-r \theta} K N\left(d_{2}\right)
\end{aligned}
$$

Finally

$$
\begin{aligned}
\mathbb{E}\left[e^{-r(N-n)}\left(S_{N}-K\right)_{+} \mid \mathcal{F}_{n}\right] & =\varphi\left(S_{n}\right) \\
& =S_{n} N\left(d_{1}\right)-e^{-r \theta} K N\left(d_{2}\right)
\end{aligned}
$$

Solution 1.4

```
from math import exp, log, sqrt
from scipy.stats import norm
def call_closed_formula(maturity, spot, strike, rate, vol):
    """Closed Formula for a call in Black Scholes.
    """
    sigmasqrt = vol * sqrt(maturity)
    d1 = (log(spot / strike) + rate * maturity) / sigmasqrt + sigmasqrt * 0.5
    d2 = d1 - sigmasqrt
    return spot * norm.cdf(d1) - exp(-rate * maturity) * strike * norm.cdf(d2)
```

