Introduction to Mathematical Finance

Exercise sheet 3

Exercise 3.1 Consider a financial market $\left(\widetilde{S}^{0}, \widetilde{S}^{1}, \widetilde{S}^{2}\right)$ consisting of a bank account and two stocks. The stock price movements of \widetilde{S}^{1} and \widetilde{S}^{2} are described by the following tree, where the numbers beside the branches denote transition probabilities. Assume that the risk-free rate is given by $r=0.01$.

(a) Show that the financial sub-markets $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ and $\left(\widetilde{S}^{0}, \widetilde{S}^{2}\right)$ are free of arbitrage by constructing the equivalent martingale measures Q^{1} for S^{1} and Q^{2} for S^{2}.
Hint: Write down the tree for the discounted stock prices S^{1} and S^{2}.
(b) Show that the market $\left(\widetilde{S}^{0}, \widetilde{S}^{1}, \widetilde{S}^{2}\right)$ is not free of arbitrage by explicitly constructing an arbitrage opportunity.
Hint: Calculate the expectation of S_{1}^{2} under the equivalent martingale measure Q^{1} for S^{1}.
(c) By which number do you have to replace 105.04 in the stock price movement of \widetilde{S}^{1} so that the market $\left(\widetilde{S}^{0}, \widetilde{S}^{1}, \widetilde{S}^{2}\right)$ is free of arbitrage?

Exercise 3.2 Binomial market

(a) Let $\left(\tilde{S}_{0}, \tilde{S}_{1}\right)$ be a one step binomial model. At time 0 the price of the stock is \tilde{S}_{0}. At time 1, there is two possibilities, the stock price goes up and $\tilde{S}_{1}=S_{0} u$, or goes down and $\tilde{S}_{1}=S_{0} d$. The discounted price $S_{1}=e^{-r} \tilde{S}_{1}$ and $S_{0}=\tilde{S}_{0}$. Let have a payoff function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$. Construct a self-financing strategy ξ such that $V_{1}(\xi)=e^{-r} f\left(\tilde{S}_{1}\right) \quad P$-a.s. .
(b) This binomial model can be extended to any arbitrary number of periods n, the multi-step binomial model by setting $S_{n}^{0}=e^{r n}$. At each time, there is two possibilities, the stock price goes up and $\tilde{S}_{k+1}=\tilde{S}_{k} u$, or goes down and $\tilde{S}_{k+1}=\tilde{S}_{k} d$. Let f be a payoff of the form $f\left(\tilde{S_{n}^{1}}\right)$. The arbitrage free price of such a payoff at time k can then be written as $v\left(k, \tilde{S}_{k}^{1}\right)$.
Show that the function $v\left(k, \tilde{S}_{k}^{1}\right)$ fulfills the following backward recursion formula:

$$
\begin{equation*}
v(k, x)=e^{-r}(q v(k+1, x u)+(1-q) v(k+1, x d)) \tag{1}
\end{equation*}
$$

where

$$
q:=\frac{e^{r}-d}{u-d}
$$

and

$$
v(n, x)=f(x)
$$

(c) Write a pseudo-code of a multi-steps binomial tree that computes the arbitrage free price of an derivative with payoff f.

Exercise 3.3 Call non-decreasing with respect to maturity

Consider a general multi-period market and denote by $C(t, K)$ the payoff $\left(S_{t}^{1}-K\right)^{+}$at time t. Call t the maturity of the option. Assume that these options are traded, that $r \geq 0$, and that the market is free of arbitrage.

Fix K and show that the price of such call options is non-decreasing as a function of maturity.
Exercise 3.4 Python - Call and Put Using the Black and Scholes closed formula plot the price of a call and put option with respect the spot price. Follow the instruction on the plot.py file. See the first example of a call option.

```
from math import sin, cos
import closed_formula
import monte_carlo
from payoff import call, put
def plot_example():
    x_values = np.linspace(-5, 5, 100)
    sin_values = [sin(x) for x in x_values]
    cos_values = [cos(x) for x in x_values]
    plt.plot(x_values, sin_values, label='sin')
    plt.plot(x_values, cos_values, label='cos')
    plt.xlabel('x')
    plt.ylabel('f(x)')
    plt.legend()
    plt.show()
```


Figure 1: Call option price with strike 100 , rate 30%, volatility 20%. For different maturities : 1 Y (year), 6 M (months) and 3 M .

