Introduction to Mathematical Finance

Solution sheet 3

Solution 3.1

(a) The tree for the discounted stock prices S^{1} and S^{2} is given by

Any probability measure Q equivalent to P on \mathcal{F}_{1} can be described by a probability vector $\left(q_{1}, q_{2}\right) \in(0,1)^{2}$, where $q_{1}=Q\left[S_{1}=98\right]$ and $q_{2}=Q\left[S_{1}=104\right]$. Since \mathcal{F}_{0} is trivial, S^{1} is a Q^{1}-martingale and S^{2} is a Q^{2}-martingale if and only if $E_{Q^{1}}\left[S_{1}^{1}\right]=S_{0}^{1}$ and $E_{Q^{2}}\left[S_{1}^{2}\right]=S_{0}^{2}$, respectively. The latter is equivalent to

$$
\left.\begin{array}{rlrlr}
98 q_{1}^{1}+104\left(1-q_{1}^{1}\right) & =100 & & \text { and } & 48 q_{1}^{2}+53\left(1-q_{1}^{2}\right)
\end{array}\right)=50 .
$$

In conclusion, Q^{1} and Q^{2} are respectively described by the probability vectors $(2 / 3,1 / 3)$ and $(3 / 5,2 / 5)$, respectively. Note that Q^{1} and Q^{2} are the unique equivalent martingale measures for S^{1} and S^{2}, respectively.
(b) We have

$$
\begin{equation*}
E_{Q^{1}}\left[S_{1}^{2}\right]=2 / 3 \times 48+1 / 3 \times 53 \approx 49.67<50=S_{0}^{2} \tag{1}
\end{equation*}
$$

If the market $\left(\widetilde{S}^{0}, \widetilde{S}^{1}, \widetilde{S}^{2}\right)$ were free of arbitrage, by the Fundamental Theorem of Asset Pricing (FTAP) there would be an equivalent martingale measure Q, which a fortiori would be an equivalent martingale measure for the sub-market ($\widetilde{S}^{0}, \widetilde{S}^{1}$), too. Given that ($\widetilde{S}^{0}, \widetilde{S}^{1}$) has the unique equivalent martingale measure Q^{1}, this would imply that $Q=Q^{1}$. Therefore, since $E_{Q^{1}}\left[S_{1}^{2}\right]<S_{0}^{2}$, we may on the one hand conclude that the market ($\left.\widetilde{S}^{0}, \widetilde{S}^{1}, \widetilde{S}^{2}\right)$ is not free of arbitrage, and on the other hand that \widetilde{S}^{2} is "overpriced". Hence, we should short-sell, say, one share of \widetilde{S}^{2} and invest the money into \widetilde{S}^{1} and the bank account. Therefore, we take the strategy $\hat{\xi}_{1}=\left(\xi_{1}^{1}, \xi_{1}^{2}\right)=(c,-1)$, where $c>0$ is still to be determined. Then we have ${ }^{1}$

$$
(\xi \bullet S)_{1}=\binom{\xi_{1}^{1}}{\xi_{1}^{2}} \cdot\binom{\Delta S_{1}^{1}}{\Delta S_{1}^{2}}= \begin{cases}c \times(98-100)-1 \times(48-50)=2-2 c & \text { on }\left\{S_{1}=98\right\} \tag{2}\\ c \times(104-100)-1 \times(53-50)=4 c-3 & \text { on }\left\{S_{1}=104\right\}\end{cases}
$$

${ }^{1}$ cumulative gains and losses $(\xi \bullet S)_{t}=\sum_{k=1}^{T} \bar{\xi}_{k} \cdot\left(\bar{S}_{k}-\bar{S}_{k-1}\right)=\sum_{k=1}^{t} \bar{\xi}_{k} \cdot \Delta \bar{S}_{k}$

If the initial value of the portfolio is $V_{0}(\xi)=0$ then ξ is an arbitrage opportunity if and only if $V_{1}(\xi) \geq 0 \Leftrightarrow(\xi \bullet S)_{1} \geq 0{ }^{2}$

$$
\begin{array}{rrrr}
\Leftrightarrow & 2-2 c \geq 0 & \text { and } & 4 c-3 \geq 0 \\
\Leftrightarrow & c \leq 1 & \text { and } & c \geq 3 / 4 \tag{3}
\end{array}
$$

where at least one of the two inequalities is strict. Thus, ξ is an arbitrage opportunity if and only if $c \in[0.75,1]$.
(c) If we replace 105.04 in the stock price movement of \widetilde{S}^{1} by s, then the argument in part (b) shows that the market $\left(\widetilde{S}^{0}, \widetilde{S}^{1}, \widetilde{S}^{2}\right)$ is free of arbitrage if and only if Q^{2}, the equivalent martingale measure for the sub-market $\left(\widetilde{S}^{0}, \widetilde{S}^{2}\right)$, is an equivalent martingale measure for the whole market, i.e. if and only if S^{1} is a Q^{2}-martingale. Since \mathcal{F}_{0} is trivial, the latter is equivalent to

$$
\begin{array}{rlr}
E_{Q^{2}}\left[S_{1}^{1}\right]=S_{0}^{1} & \Leftrightarrow & 3 / 5 \times 98+2 / 5 \times \frac{s}{1+r}=100 \\
& \Leftrightarrow & s=103 \times 1.01=104.03 \tag{4}
\end{array}
$$

Solution 3.2 Binomial market

(a) A self-financing strategy ξ satisfies

$$
\begin{equation*}
V_{1}(\xi)=e^{-r} f\left(\tilde{S}_{1}\right) \quad P \text {-a.s. } \tag{5}
\end{equation*}
$$

if and only if we have

$$
V_{0}+\xi_{1} \Delta S_{1}=e^{-r} f\left(\tilde{S}_{1}\right) \quad P \text {-a.s. }
$$

Since S only takes two values, $\Delta S_{1}=S_{1}-S_{0}=e^{-r} S_{0} x-S_{0}=S_{0} e^{-r}\left(x-e^{r}\right)$, for $x=\{u, d\}$. Hence we obtain the following linear equation.

$$
\begin{align*}
& V_{0}+\xi_{1} S_{0} e^{-r}\left(u-e^{r}\right)=e^{-r} f\left(S_{0} u\right) \tag{6}\\
& V_{0}+\xi_{1} S_{0} e^{-r}\left(d-e^{r}\right)=e^{-r} f\left(S_{0} d\right) \tag{7}
\end{align*}
$$

Subtracting the two equations, multiplying by e^{r} and dividing by S_{0} yields

$$
\begin{align*}
\xi_{1} S_{0}(u-d) & =f\left(S_{0} u\right)-f\left(S_{0} d\right) \\
\Leftrightarrow \quad \xi_{1} & =\frac{f\left(S_{0} u\right)-f\left(S_{0} d\right)}{S_{0} u-S_{0} d} \tag{8}
\end{align*}
$$

Plugging this into (6) yields after rearranging

$$
\begin{aligned}
V_{0} & =-\xi_{1} S_{0} e^{-r}\left(u-e^{r}\right)+e^{-r} f\left(S_{0} u\right) \\
& =e^{-r}\left(-\xi_{1} S_{0}\left(u-e^{r}\right)+f\left(S_{0} u\right)\right) \\
& =e^{-r}\left(-\frac{f\left(S_{0} u\right)-f\left(S_{0} d\right)}{S_{0} u-S_{0} d} S_{0}\left(u-e^{r}\right)+f\left(S_{0} u\right)\right) \\
& =e^{-r}\left(-\left(f\left(S_{0} u\right)-f\left(S_{0} d\right)\right) \frac{u-e^{r}}{u-d}+f\left(S_{0} u\right)\right) \\
& =e^{-r}\left(\frac{e^{r}-d}{u-d} f\left(S_{0} u\right)+\frac{u-e^{r}}{u-d} f\left(S_{0} d\right)\right)
\end{aligned}
$$

[^0](b) At maturity, the price of the option is equal to its payoff: $v(n, x)=f(x)$. At the previous date, we apply (a).
\[

$$
\begin{aligned}
v\left(n-1, \tilde{S}_{n-1}\right) & =e^{-r}\left(\frac{e^{r}-d}{u-d} f\left(\tilde{S}_{n-1} u\right)+\frac{u-e^{r}}{u-d} f\left(\tilde{S}_{n-1} d\right)\right) \\
& =e^{-r}\left(q v\left(n, \tilde{S}_{n-1} u\right)+(1-q) v\left(n, \tilde{S}_{n-1} d\right)\right)
\end{aligned}
$$
\]

At a previous date $k-1$, knowing $v(k, x u)$ and $v(k, x d)$ and by applying (a), we get

$$
v(k-1, x)=e^{-r}(q v(k, x u)+(1-q) v(k, x d)) .
$$

(c) function Price($\mathrm{T}, S_{0}, \mathrm{~K}, \mathrm{r}, \sigma, \mathrm{n}$, payoff)

$$
\begin{aligned}
& \delta t \leftarrow \frac{T}{n} \\
& u \leftarrow e^{\sigma \sqrt{\delta t}} \\
& d \leftarrow \frac{1}{u}
\end{aligned}
$$

Solution 3.3 Call non-decreasing with respect to maturity

Assume the opposite, i.e., that there exist two time points $t_{1}<t_{2}$ such that $\pi\left(C\left(t_{1}, K\right)\right)>$ $\pi\left(C\left(t_{2}, K\right)\right)$ and construct an arbitrage opportunity. We will only need to trade at time 0 and time t_{1}. Without loss of generality, we may assume that the prices below are discounted.

Time 0 Sell $C\left(t_{1}, K\right)$, buy $C\left(t_{2}, K\right)$, and deposit the difference ξ_{1}^{0} in the bank account. This comes with initial cost 0 .

Time t_{1} At time t_{1} we have two cases:
A: $S_{t_{1}}^{1} \leq K$. Do not do anything.
B: $S_{t_{1}}^{1}>K$. Take a short position in S^{1} and deposit K in the bank account.
Time t_{2} If we are in scenario A it does not matter what happens at t_{2} since we will get a non-negative payoff and have no short positions. We are therefore left with B.
C: $S_{t_{2}}^{1}<K$. Close the short position in S^{1} at the cost $S_{t_{2}}^{1}$, which is less than what we deposited. More precisely, the value

$$
V_{2}=\xi_{1}^{0}-S_{t_{2}}^{1}+K>\xi_{1}^{0}>0
$$

D: $S_{t_{2}}^{1} \geq K$. Get $S_{t_{2}}^{1}-K$ from the call option. Close the position in S^{1} and the bank account. The value in this scenario is therefore ξ_{1}^{0}.

Figure 1: Call option price with strike 100, rate 30%, volatility 20%. For different maturities : 1 Y (year), 6 M (months) and 3 M .

Figure 2: Put option price with strike 100 , rate 30%, volatility 20%. For different maturities : $1 \mathrm{Y}, 6 \mathrm{M}$ and 3 M .

Figure 3: Call option price with maturity 1 Y , strike 100, rate 2%. For different volatilities : 10, 20,30 and 50%.

Figure 4: Call option price with maturity 1 Y , strike 100 , rate 2% and volatility 0.2 . For different rate : $1,5,10$ and 20%.

Figure 5: Call - Put price with maturity 1 Y , strike 100 , rate 2% and volatility 0.2 . For different rate : $1,5,10$ and 20%.

We have thus constructed a portfolio which has initial value $V_{0}=0$ and final value $V_{t_{2}} \geq 0$ P-a.s.-an arbitrage opportunity. By the assumption of no arbitrage, this is a contradiction.

Solution 3.4 Python - Call and Put

[^0]: ${ }^{2} V_{1}(\xi)=V_{0}(\xi)+(\xi \bullet S)_{1}$

