Introduction to Mathematical Finance

Exercise sheet 4

Exercise 4.1 Let $\left(\Omega, \mathcal{F}, P, \mathbb{F}=\left(\mathcal{F}_{k}\right)_{k=0, \ldots, T}\right)$ be a filtered probability space and $X=\left(X_{k}\right)_{k=0, \ldots, T}$ a discounted price process. Show that the following are equivalent:
(a) S satisfies (NA).
(b) For each $k=0, \ldots, T-1$, the one-period market $\left(X_{k}, X_{k+1}\right)$ on $\left(\Omega, \mathcal{F}_{k+1}, P,\left(\mathcal{F}_{k}, \mathcal{F}_{k+1}\right)\right)$ satisfies (NA). Give an economic interpretation of this result.
Hint: Prove the contraposition of the direction '(b) $\Rightarrow(\mathrm{a})$ '. Argue via induction on T.
Exercise 4.2 Consider a multi-step binomial market. Let have First fix $r>-1$ and let $S_{k}^{0}=(1+r)^{k}$. Now define $S_{0}^{1}=1$ and

$$
S_{k}^{1}=\prod_{i=1}^{k} R_{i}^{1}, \quad k=1, \ldots, T
$$

where the R_{k}^{1} are i.i.d. and

$$
P\left[R_{k}^{1}=1+u\right]=1-P\left[R_{k}^{1}=1+d\right] \in(0,1)
$$

for $u>d$.
Suppose now, for the sake of the exercise, that $r=0, u=0.5$ as well as $d=-0.5$ and consider the strategy $\left(V_{0}, \xi\right)$ given by

$$
\xi_{k}=\frac{1}{S_{k-1}^{1}} 2^{k} 1_{\{k \leq \tau\}}
$$

where $\tau=\inf \left\{k \mid R_{k}^{1}=1+u\right\} \wedge T$.
(a) Calculate the biggest loss over all time points to see how it depends on T. Conclude that the strategy would not be admissible if $T=\infty$.
(b) Suppose that $T=\infty$ and calculate the value of the strategy at the stopping time τ.

Remark: The mathematical term 'martingale' has one of its origins in this type of strategy, also called martingales.

Exercise 4.3 Consider a market with trading dates $k=0, \ldots, T$, with N traded assets on the probability space (Ω, \mathcal{F}, P) and the filtration given by $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k=0, \ldots, T}$, i.e., a general multiperiod market.

For any strategy ξ, we define the process $\widetilde{C}=\left(\widetilde{C}_{k}\right)_{k=0, \ldots, T}$ by

$$
\widetilde{C}_{k}(\xi):=\widetilde{V}_{k}(\xi)-(\xi \bullet S)_{k}
$$

(a) Show that ${ }^{1}$

$$
\Delta \widetilde{C}_{k+1}(\xi)=\Delta \xi_{k+1} \cdot S_{k}
$$

$$
\text { for } k=1, \ldots, T-1
$$

[^0](b) Show that ξ is self-financing if and only if
$$
\widetilde{C}_{k}(\xi)=\widetilde{C}_{0}(\xi)
$$
for $k=1, \ldots, T$.
Hint: Be careful with definitions at the first time point.
Remark: The process \widetilde{C} is called the cost process for ξ.

Exercise 4.4 Python - Binomial tree

Compute the price of an option using a binomial tree.

```
def binomial_price(maturity, spot, strike, rate, vol, steps_number, payoff_fct,
    graph_name=None):
    """Compute the binomial price. Draw graph if graph_name is given.
    """
    deltaT = maturity / steps_number
    discount_factor = exp(-rate * deltaT)
    up = exp(vol * sqrt(deltaT))
    down = 1 / up
    proba_up = (1/discount_factor - down) / (up - down)
    proba_down = 1 - proba_up
    steps = range(steps_number)
    # See create_graph docstring for an explanation on how
    # spot_prices and option_prices are structured.
    spot_prices = [[None] * (i+1) for i in steps]
    option_prices = [[None] * (i+1) for i in steps]
    # Forward: set the stock prices
    for n in steps:
    for i in range(n+1):
        spot_prices[n][i] = 0. # TODO
    # Backward: compute the option prices
    # First initialize values at maturity ([-1] means last element)
    for i, spot_price in enumerate(spot_prices[-1]):
    option_prices[-1][i] = 0. # TODO
    # Then move to earlier steps
    for n in reversed(steps[:-1]): # t[:-1] is to remove last element
    for i in range(n+1):
        option_prices[n][i] = 0. # TODO
if graph_name:
    create_graph(graph_name, spot_prices, option_prices)
return option_prices[0][0]
```


Figure 1: Binomial tree for a Call option with strike 100, rate 20\%, volatility 30%.

[^0]: ${ }^{1} \Delta A_{k+1}:=A_{k+1}-A_{k}$

