Introduction to Mathematical Finance

Exercise sheet 5

Exercise 5.1 Let $(\tilde{S}^0, \tilde{S}^1)$ be an *arbitrage-free* financial market with time horizon T and assume that the bond satisfies $\tilde{S}_k^0 = (1+r)^k$ for k = 0, ..., T with $r \ge 0$. Denote the set of all equivalent martingale measures for S^1 by $P_e(S^1)$. Fix K > 0 and let $k \in \{1, ..., T\}$. The payoff of a *European call option* on \tilde{S}^1 with strike K and maturity k is denoted by C_k^E and given by

$$C_k^E = \left(\widetilde{S}_k^1 - K\right)^+,\,$$

whereas the payoff an Asian call option on \widetilde{S}^1 with strike K and maturity k is denoted by C_k^A and given by

$$C_k^A := \left(\frac{1}{k} \sum_{j=1}^k \widetilde{S}_j^1 - K\right)^+$$

- (a) Fix $Q \in P_e(S^1)$. Show that the function $\{1, \ldots, T\} \to \mathbb{R}^+, k \mapsto E_Q\left[\frac{C_k^E}{\widetilde{S}_k^0}\right]$ is increasing. *Hint:* Use Jensen's inequality for conditional expectations.
- (b) Fix $Q \in P_e(S^1)$. Show that for all k = 1, ..., T we have

$$E_Q\left[\frac{C_k^A}{\widetilde{S}_k^0}\right] \le \frac{1}{k} \sum_{j=1}^k E_Q\left[\frac{C_j^E}{\widetilde{S}_j^0}\right].$$

(c) Fix $Q \in P_e(S^1)$. Deduce that for all k = 1, ..., T we have

$$E_Q\left[\frac{C_k^A}{\widetilde{S}_k^0}\right] \le E_Q\left[\frac{C_k^E}{\widetilde{S}_k^0}\right].$$

Exercise 5.2 In this exercise we consider the probability space (Ω, \mathcal{F}, P) and a market given by

$$\begin{aligned} \pi^0 &= 1, & \pi^1 &= 1, \\ S^0 &= e^r, & S^1 &= e^Y, \end{aligned}$$

where Y follows a standard normal distribution under P. If you want, you may assume that $\Omega = \mathbb{R}$. Define

 $\Pi^b(C^{\text{call}}) :=$

$$\left\{E^b\left[\frac{C^{\mathrm{call}}}{e^r}\right]:S^1 \text{ is binomially distributed under } P^b, E^b\left[\frac{S^1}{e^r}\right]=\pi^1\right\}.$$

This is the set of arbitrage free prices under some measure for which S^1 is binomially distributed.

The goal of this exercise is to show that

$$\Pi^{b}(C^{\text{call}}) \subseteq \left[\Pi_{\inf}(C^{\text{call}}), \Pi_{\sup}(C^{\text{call}})\right]$$

Updated: March 22, 2017

1/2

- (a) Construct a sequence of martingale measures absolutely continuous to P that converges weakly to a martingale measure under which S^1 is binomially distributed.
- (b) Construct convex combinations of this sequence and P^* to show the inclusion above.

Exercise 5.3

(a) Let $f: \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ be a function. We define $f^*: \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ such that

$$f^*(y) := \sup_{x \in \mathbb{R}} \{yx - f(x)\} \qquad \forall y \in \mathbb{R}$$

- (1) Show that f^* is a closed convex function.¹
- (2) Show that if f is a closed convex function then $f^{**} = f^{2}$.
- (b) Let now $f: X \to \mathbb{R} \cup \{\pm \infty\}$ and $f^*: X^* \to \mathbb{R} \cup \{\pm \infty\}^3$ defined as follow

$$f^*(x^*) := \sup_{x \in X} \{ < x^*, x > -f(x) \} \qquad \forall x^* \in X^*$$

Show that if f is a closed convex function then $f^{**} = f$.

(c) Let $C \subset X$ be a non-empty closed convex cone. The polar $C^{\circ} = \{x^* \in X^* | \langle x^*, x \rangle \leq 0 \quad \forall x \in C\}$ of C is then another non-empty closed convex cone and $(C^{\circ})^{\circ} = C$. Show that if

$$f(x) = \delta(x|C) := \begin{cases} 0 & x \in C \\ \infty & \text{else} \end{cases}$$

is the *indicator function* of a cone C then $(C^{\circ})^{\circ} = C \iff f^{**} = f$.

Exercise 5.4 Python - Path dependent derivative

- (a) Change the binomial price function to handle a double knock-out barrier call option with payoff $f(S_T) = (S_T K)_+ 1_{a \le S_t \le b, 0 \le t \le T}$. Same for a double knockout barrier put option.
- (b) Draw the graph for a cal and a put, for steps number = 10.
- (c) Compare with Monte Carlo (see compare.py).

¹A convex set is a subset C of a vector space X if for all $x, y \in C, \lambda \in [0, 1]$ we have that $\lambda x + (1 - \lambda)y \in C$. Let $f : \mathbb{R} \to \mathbb{R} \cup \{\pm \infty\}$ be a function, we define the *epigraph* as $\operatorname{epi}(f) = \{(x, \alpha) : x, \alpha \in \mathbb{R} \text{ and } f(x) \leq \alpha\}$. f is said to be a convex function if $\operatorname{epi}(f)$ is a convex set. f is said to be a closed function if $\operatorname{epi}(f)$ is a closed set.

²If f is a lower semi-continuous and convex, then $f(x) := \sup_{a \le f} \{a(x)\}$ where the supremium is taken over all continuous affine functionals on X.

³The dual space of X denoted X^* is the space of continuous linear functionals on X.