Introduction to Mathematical Finance
 Solution sheet 5

Solution 5.1

(a) It clearly suffices to show that for all $k=1, \ldots, T-1$ we have

$$
\begin{equation*}
E_{Q}\left[\frac{C_{k+1}^{E}}{\widetilde{S}_{k+1}^{0}}\right] \geq E_{Q}\left[\frac{C_{k}^{E}}{\widetilde{S}_{k}^{0}}\right] \tag{1}
\end{equation*}
$$

Fix $k \in\{1, \ldots, T-1\}$. Using the tower property of conditional expectations, Jensen's inequality for conditional expectations (for the convex function $x \mapsto x^{+}$), the fact that S^{1} is a Q-martingale and $r \geq 0$, we get

$$
\begin{align*}
E_{Q}\left[\frac{C_{k+1}^{E}}{\widetilde{S}_{k+1}^{0}}\right] & =E_{Q}\left[\left(S_{k+1}^{1}-\frac{K}{(1+r)^{k+1}}\right)^{+}\right] \\
& =E_{Q}\left[E_{Q}\left[\left.\left(S_{k+1}^{1}-\frac{K}{(1+r)^{k+1}}\right)^{+} \right\rvert\, \mathcal{F}_{k}\right]\right] \\
& \geq E_{Q}\left[\left(E_{Q}\left[\left.S_{k+1}^{1}-\frac{K}{(1+r)^{k+1}} \right\rvert\, \mathcal{F}_{k}\right]\right)^{+}\right] \\
& =E_{Q}\left[\left(S_{k}^{1}-\frac{K}{(1+r)^{k+1}}\right)^{+}\right] \\
& \geq E_{Q}\left[\left(S_{k}^{1}-\frac{K}{(1+r)^{k}}\right)^{+}\right] \\
& =E_{Q}\left[\frac{C_{k}^{E}}{\widetilde{S}_{k}^{0}}\right] \tag{2}
\end{align*}
$$

(b) Since the function $x \mapsto x^{+}$is convex, we have for $k=1, \ldots, T$

$$
\begin{align*}
C_{k}^{A} & =\left(\frac{1}{k} \sum_{j=1}^{k} \widetilde{S}_{j}^{1}-K\right)^{+}=\left(\sum_{j=1}^{k} \frac{1}{k}\left(\widetilde{S}_{j}^{1}-K\right)\right)^{+} \\
& \leq \sum_{j=1}^{k} \frac{1}{k}\left(\widetilde{S}_{j}^{1}-K\right)^{+}=\frac{1}{k} \sum_{j=1}^{k} C_{j}^{E} \tag{3}
\end{align*}
$$

By linearity and monotonicity of conditional expectations and since $r \geq 0$, we get

$$
\begin{align*}
E_{Q}\left[\frac{C_{k}^{A}}{\widetilde{S}_{k}^{0}}\right] & =E_{Q}\left[\frac{C_{k}^{A}}{(1+r)^{k}}\right] \leq \frac{1}{k} \sum_{j=1}^{k} E_{Q}\left[\frac{C_{j}^{E}}{(1+r)^{k}}\right] \\
& \leq \frac{1}{k} \sum_{j=1}^{k} E_{Q}\left[\frac{C_{j}^{E}}{(1+r)^{j}}\right]=\frac{1}{k} \sum_{j=1}^{k} E_{Q}\left[\frac{C_{j}^{E}}{\widetilde{S}_{j}^{0}}\right] \tag{4}
\end{align*}
$$

(c) Putting the results of (a) and (b) together yields for $k=1, \ldots, T$

$$
\begin{equation*}
E_{Q}\left[\frac{C_{k}^{A}}{\widetilde{S}_{k}^{0}}\right] \leq \frac{1}{k} \sum_{j=1}^{k} E_{Q}\left[\frac{C_{j}^{E}}{\widetilde{S}_{j}^{0}}\right] \leq \frac{1}{k} \sum_{j=1}^{k} E_{Q}\left[\frac{C_{k}^{E}}{\widetilde{S}_{k}^{0}}\right]=E_{Q}\left[\frac{C_{k}^{E}}{\widetilde{S}_{k}^{0}}\right] \tag{5}
\end{equation*}
$$

Solution 5.2 We will consider measures P^{ε} fulfilling

$$
d\left(P^{\varepsilon} \circ\left(S^{1}\right)^{-1}\right)=f^{\varepsilon} d \mu
$$

for some Borel function f^{ε} and where μ denotes the Lebesgue measure-measures under which S^{1} has the probability density function f^{ε}.

Assume for now that P^{ε} can be constructed from $P^{\varepsilon} \circ\left(S^{1}\right)^{-1}$ and proceed to construct f^{ε} appropriately. Set

$$
f^{\varepsilon}(s)=C_{d}^{\varepsilon} 1_{[d, d+\varepsilon)}(s)+C_{u}^{\varepsilon} 1_{[u, u+\varepsilon)}(s)
$$

for some u and d such that $u>e^{r}>d$. We will require u and d to be in the image of $S^{1}: \Omega \rightarrow \mathbb{R}$. Then the martingale conditions take the form

$$
\begin{aligned}
& 1=\int_{\mathbb{R}} f^{\varepsilon}(s) d s=C_{d}^{\varepsilon} \varepsilon+C_{u}^{\varepsilon} \varepsilon \\
& 1=\int_{\mathbb{R}} e^{-r} s f^{\varepsilon}(s) d s=C_{d}^{\varepsilon} e^{-r} \frac{\varepsilon^{2}+2 \varepsilon d}{2}+C_{u}^{\varepsilon} e^{-r} \frac{\varepsilon^{2}+2 \varepsilon u}{2}
\end{aligned}
$$

This is a linear system of equations in C_{d}^{ε} and C_{u}^{ε} which is solved by

$$
\left[\begin{array}{l}
C_{d}^{\varepsilon} \\
C_{u}^{\varepsilon}
\end{array}\right]=\frac{1}{e^{-r} \varepsilon^{2}(u-d)}\left[\begin{array}{cc}
e^{-r \frac{\varepsilon^{2}+2 \varepsilon u}{2}} & -\varepsilon \\
-e^{-r \frac{\varepsilon^{2}+2 \varepsilon d}{2}} & \varepsilon
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad=\quad \frac{1}{\varepsilon(u-d)}\left[\begin{array}{l}
\frac{\varepsilon}{2}+u-e^{r} \\
e^{r}-d-\frac{\varepsilon}{2}
\end{array}\right]
$$

Note that by the constraints on u and $d, f^{\varepsilon}>0$ is indeed a probability density function.
Under this sequence of measures P^{ε}, the law of S^{1} converges weakly to

$$
\frac{u-e^{r}}{u-d} \delta_{d}+\frac{e^{r}-d}{u-d} \delta_{u}
$$

Call the corresponding probability measure P^{b}. This measure makes S^{1} a martingale.
Now let

$$
P_{\mathrm{conv}}^{\varepsilon}=\varepsilon P^{*}+(1-\varepsilon) P^{\varepsilon}
$$

for $1 \gg \varepsilon>0$. Then, since $P_{\text {conv }}^{\varepsilon}$ is a convex combination of martingale measures, $P_{\text {conv }}^{\varepsilon}$ is itself a martingale measure. Furthermore, since P^{ε} is absolutely continuous to P and $P^{*} \approx P, P_{\text {conv }}^{\varepsilon} \approx P$ and it is an equivalent martingale measure. It follows that

$$
\int_{\Omega} \frac{C^{\text {call }}}{e^{r}} d P_{\mathrm{conv}}^{\varepsilon} \in\left(\Pi_{\mathrm{inf}}\left(C^{\mathrm{call}}\right), \Pi_{\mathrm{sup}}\left(C^{\mathrm{call}}\right)\right.
$$

Furthermore,

$$
\int_{\Omega} \frac{C^{\text {call }}}{e^{r}} d P_{\mathrm{conv}}^{\varepsilon}=\varepsilon \underbrace{\int_{\Omega} \frac{C^{\text {call }}}{e^{r}} d P^{*}}_{<\infty}+(1-\varepsilon) \int_{\Omega} \frac{C^{\text {call }}}{e^{r}} d P^{\varepsilon}
$$

As P^{*} does not change with ε, the first term tends to 0 , and since all P^{ε} have their support inside $[0, u+1]$ and $C^{\text {call }}$ is bounded on bounded domains, the weak convergence implies that

$$
\int_{\Omega} \frac{C^{\mathrm{call}}}{e^{r}} d P_{\mathrm{conv}}^{\varepsilon} \longrightarrow E^{b}\left[\frac{C^{\mathrm{call}}}{e^{r}}\right] \in\left[\Pi_{\mathrm{inf}}\left(C^{\mathrm{call}}\right), \Pi_{\mathrm{sup}}\left(C^{\mathrm{call}}\right)\right]
$$

Since the choice of u and d was arbitrary, we are done as soon as we have covered our assumption above:

Let us now show we can find P^{ε} from the law constructed above. With the assumption that $\Omega=\mathbb{R}$ this is straight forward by an appropriate choice of Y. In the general case we see that it will be true whenever $S^{1}: \Omega \rightarrow \mathbb{R}$ is injective. However, we could construct the measure on the space where we identify two points in Ω if they are mapped to the same value by S^{1}. Since $\mathcal{F}=\sigma\left(S^{1}\right)$, such a measure directly translates to the original space, which means we are done.
Remark: The conclusion does not depend on the fact that Y has mean 0 and variance 1, but we would have to use another EMM than P^{*} since it would no longer be one.

Solution 5.3 Fenchel-Moreau Theorem

(a) (1) Define the affine functions $h_{x}(y)=y x-f(x)$. The affine functions are closed and convex which means that epi $\left(h_{x}\right)$ is a closed convex set for all $x \in \mathbb{R}$. We write f^{*} as follow

$$
f^{*}(y)=\sup _{x \in \mathbb{R}}\{y x-f(x)\}=\sup _{x \in \mathbb{R}}\left\{h_{x}(y)\right\}
$$

This implies

$$
\operatorname{epi}\left(f^{*}\right)=\sup _{x \in \mathbb{R}}\left\{\operatorname{epi}\left(h_{x}\right)\right\}=\bigcap_{x \in \mathbb{R}}\left\{\operatorname{epi}\left(h_{x}\right)\right\}
$$

The intersection of closed convex sets is again closed convex which means that f^{*} is closed and convex.
Remark: f^{*} is called the Legendre Transformation.
(2) We use the fact that a closed convex function f can be written as the pointwise supremum of the collection of all affine functions h satisfying $h \leq f .{ }^{1}$

$$
f(x)=\sup \{h(x)=y x-\alpha: h \leq f\} \quad \forall x \in \mathbb{R}
$$

This leads to

$$
\begin{aligned}
y x-\alpha \leq f(x) \quad \forall x \in \mathbb{R} & \Longleftrightarrow y x-f(x) \leq \alpha \quad \forall x \in \mathbb{R} \\
& \Longleftrightarrow \sup _{x \in \mathbb{R}}\{y x-f(x)\} \leq \alpha \\
& \Longleftrightarrow f^{*}(y) \leq \alpha \\
& \Longleftrightarrow(y, \alpha) \in \operatorname{epi}\left(f^{*}\right)
\end{aligned}
$$

So we have

$$
f(x)=\sup _{(y, \alpha) \in \operatorname{epi}\left(f^{*}\right)}\{y x-\alpha\} \quad \forall x \in \mathbb{R}
$$

For $(y, \alpha) \in \operatorname{epi}\left(f^{*}\right)$ we have that $y x-\alpha \leq y x-f^{*}(x)$, so

$$
\begin{aligned}
f(x) & =\sup _{y \in \mathbb{R}}\left\{y x-f^{*}(x)\right\} \quad \forall x \in \mathbb{R} \\
& =f^{* *}(x) \quad \forall x \in \mathbb{R}
\end{aligned}
$$

(b) By definition of $f^{*}, f(x) \geq \sup _{x \in X^{*}}\left\{<x^{*}, x>-f^{*}(x)\right\}, \forall x^{*} \in X^{*}$ so $f \geq f^{* *}$.

Let a an affine minorant of $f, a \leq f$, so $a^{*} \geq f^{*}$ and $a^{* *} \leq f^{* *}$. But since a is affine, $a^{* *}=a$. So every affine minorant of f is an affine minorant of $f^{* *}$. We know that if f is a l.s.c. and convex, then $f(x):=\sup _{a \leq f}\{a(x)\}$ where the supremieum is taken over all continuous affine functionals on X . We conclude that $f \leq f^{* *}$.

[^0](c) If $f(x)=\delta(x \mid C)$ for an non empty convex cone then $f^{*}\left(x^{*}\right)=\delta\left(x^{*} \mid C^{\circ}\right)$ for a certain non convex cone which must be closed since f^{*} is closed. The conjugate of $f^{*}(\cdot)=\delta\left(\cdot \mid C^{\circ}\right)$ is $f^{* *}(\cdot)=\delta\left(\cdot \mid C^{\circ \circ}\right)$. So we obtain that
\[

$$
\begin{aligned}
f(x)=f^{* *}(x) & \Longleftrightarrow \delta(x \mid C)=\delta\left(x \mid C^{\circ \circ}\right) \\
& \Longleftrightarrow C=C^{\circ \circ}
\end{aligned}
$$
\]

Remark: Theorem 14.1 in Convex Analysis of R.Tyrrell Rockafellar.

[^0]: ${ }^{1}$ see theorem 12.1 in Convex Analysis of R.Tyrrell Rockafellar.

