Introduction to Mathematical Finance

Solution sheet 5

Solution 5.1

(a) It clearly suffices to show that for all k = 1, ..., T - 1 we have

$$E_Q\left[\frac{C_{k+1}^E}{\widetilde{S}_{k+1}^0}\right] \ge E_Q\left[\frac{C_k^E}{\widetilde{S}_k^0}\right].$$
(1)

Fix $k \in \{1, \ldots, T-1\}$. Using the tower property of conditional expectations, Jensen's inequality for conditional expectations (for the convex function $x \mapsto x^+$), the fact that S^1 is a Q-martingale and $r \ge 0$, we get

$$E_Q\left[\frac{C_{k+1}^E}{\tilde{S}_{k+1}^0}\right] = E_Q\left[\left(S_{k+1}^1 - \frac{K}{(1+r)^{k+1}}\right)^+\right]$$
$$= E_Q\left[E_Q\left[\left(S_{k+1}^1 - \frac{K}{(1+r)^{k+1}}\right)^+\right|\mathcal{F}_k\right]\right]$$
$$\geq E_Q\left[\left(E_Q\left[S_{k+1}^1 - \frac{K}{(1+r)^{k+1}}\right|\mathcal{F}_k\right]\right)^+\right]$$
$$= E_Q\left[\left(S_k^1 - \frac{K}{(1+r)^{k+1}}\right)^+\right]$$
$$\geq E_Q\left[\left(S_k^1 - \frac{K}{(1+r)^k}\right)^+\right]$$
$$= E_Q\left[\left(S_k^1 - \frac{K}{\tilde{S}_k^0}\right].$$
(2)

(b) Since the function $x \mapsto x^+$ is convex, we have for k = 1, ..., T

$$C_{k}^{A} = \left(\frac{1}{k}\sum_{j=1}^{k}\widetilde{S}_{j}^{1} - K\right)^{+} = \left(\sum_{j=1}^{k}\frac{1}{k}\left(\widetilde{S}_{j}^{1} - K\right)\right)^{+}$$
$$\leq \sum_{j=1}^{k}\frac{1}{k}\left(\widetilde{S}_{j}^{1} - K\right)^{+} = \frac{1}{k}\sum_{j=1}^{k}C_{j}^{E}.$$
(3)

By *linearity* and *monotonicity* of conditional expectations and since $r \ge 0$, we get

$$E_Q\left[\frac{C_k^A}{\widetilde{S}_k^0}\right] = E_Q\left[\frac{C_k^A}{(1+r)^k}\right] \le \frac{1}{k} \sum_{j=1}^k E_Q\left[\frac{C_j^E}{(1+r)^k}\right]$$
$$\le \frac{1}{k} \sum_{j=1}^k E_Q\left[\frac{C_j^E}{(1+r)^j}\right] = \frac{1}{k} \sum_{j=1}^k E_Q\left[\frac{C_j^E}{\widetilde{S}_j^0}\right].$$
(4)

Updated: March 22, 2017

1 / 4

(c) Putting the results of (a) and (b) together yields for k = 1, ..., T

$$E_Q\left[\frac{C_k^A}{\widetilde{S}_k^0}\right] \le \frac{1}{k} \sum_{j=1}^k E_Q\left[\frac{C_j^E}{\widetilde{S}_j^0}\right] \le \frac{1}{k} \sum_{j=1}^k E_Q\left[\frac{C_k^E}{\widetilde{S}_k^0}\right] = E_Q\left[\frac{C_k^E}{\widetilde{S}_k^0}\right].$$
(5)

Solution 5.2 We will consider measures P^{ε} fulfilling

$$d(P^{\varepsilon} \circ (S^1)^{-1}) = f^{\varepsilon} d\mu,$$

for some Borel function f^{ε} and where μ denotes the Lebesgue measure—measures under which S^1 has the probability density function f^{ε} .

Assume for now that P^{ε} can be constructed from $P^{\varepsilon} \circ (S^1)^{-1}$ and proceed to construct f^{ε} appropriately. Set

$$f^{\varepsilon}(s) = C_d^{\varepsilon} \mathbf{1}_{[d,d+\varepsilon)}(s) + C_u^{\varepsilon} \mathbf{1}_{[u,u+\varepsilon)}(s)$$

for some u and d such that $u > e^r > d$. We will require u and d to be in the image of $S^1 : \Omega \to \mathbb{R}$. Then the martingale conditions take the form

$$1 = \int_{\mathbb{R}} f^{\varepsilon}(s) ds = C_d^{\varepsilon} \varepsilon + C_u^{\varepsilon} \varepsilon,$$

$$1 = \int_{\mathbb{R}} e^{-r} s f^{\varepsilon}(s) ds = C_d^{\varepsilon} e^{-r} \frac{\varepsilon^2 + 2\varepsilon d}{2} + C_u^{\varepsilon} e^{-r} \frac{\varepsilon^2 + 2\varepsilon u}{2}.$$

This is a linear system of equations in C_d^{ε} and C_u^{ε} which is solved by

$$\begin{bmatrix} C_d^{\varepsilon} \\ C_u^{\varepsilon} \end{bmatrix} = \frac{1}{e^{-r}\varepsilon^2(u-d)} \begin{bmatrix} e^{-r\frac{\varepsilon^2+2\varepsilon u}{2}} & -\varepsilon \\ -e^{-r\frac{\varepsilon^2+2\varepsilon d}{2}} & \varepsilon \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\varepsilon(u-d)} \begin{bmatrix} \frac{\varepsilon}{2}+u-e^r \\ e^r-d-\frac{\varepsilon}{2} \end{bmatrix}$$

Note that by the constraints on u and d, $f^{\varepsilon} > 0$ is indeed a probability density function.

Under this sequence of measures P^{ε} , the law of S^1 converges weakly to

$$\frac{u-e^r}{u-d}\delta_d + \frac{e^r-d}{u-d}\delta_u.$$

Call the corresponding probability measure P^b . This measure makes S^1 a martingale.

Now let

$$P_{\rm conv}^{\varepsilon} = \varepsilon P^* + (1 - \varepsilon) P^{\varepsilon}$$

for $1 \gg \varepsilon > 0$. Then, since $P_{\text{conv}}^{\varepsilon}$ is a convex combination of martingale measures, $P_{\text{conv}}^{\varepsilon}$ is itself a martingale measure. Furthermore, since P^{ε} is absolutely continuous to P and $P^* \approx P$, $P_{\text{conv}}^{\varepsilon} \approx P$ and it is an equivalent martingale measure. It follows that

$$\int_{\Omega} \frac{C^{\text{call}}}{e^r} dP_{\text{conv}}^{\varepsilon} \in \left(\Pi_{\text{inf}}(C^{\text{call}}), \Pi_{\text{sup}}(C^{\text{call}}) \right).$$

Furthermore,

$$\int_{\Omega} \frac{C^{\text{call}}}{e^r} dP_{\text{conv}}^{\varepsilon} = \varepsilon \underbrace{\int_{\Omega} \frac{C^{\text{call}}}{e^r} dP^*}_{<\infty} + (1-\varepsilon) \int_{\Omega} \frac{C^{\text{call}}}{e^r} dP^{\varepsilon}.$$

As P^* does not change with ε , the first term tends to 0, and since all P^{ε} have their support inside [0, u + 1] and C^{call} is bounded on bounded domains, the weak convergence implies that

$$\int_{\Omega} \frac{C^{\text{call}}}{e^r} dP_{\text{conv}}^{\varepsilon} \longrightarrow E^b \left[\frac{C^{\text{call}}}{e^r} \right] \in \left[\Pi_{\inf}(C^{\text{call}}), \Pi_{\sup}(C^{\text{call}}) \right].$$

Updated: March 22, 2017

Since the choice of u and d was arbitrary, we are done as soon as we have covered our assumption above:

Let us now show we can find P^{ε} from the law constructed above. With the assumption that $\Omega = \mathbb{R}$ this is straight forward by an appropriate choice of Y. In the general case we see that it will be true whenever $S^1 : \Omega \to \mathbb{R}$ is injective. However, we could construct the measure on the space where we identify two points in Ω if they are mapped to the same value by S^1 . Since $\mathcal{F} = \sigma(S^1)$, such a measure directly translates to the original space, which means we are done.

Remark: The conclusion does not depend on the fact that Y has mean 0 and variance 1, but we would have to use another EMM than P^* since it would no longer be one.

Solution 5.3 Fenchel-Moreau Theorem

(a) (1) Define the affine functions $h_x(y) = yx - f(x)$. The affine functions are closed and convex which means that $epi(h_x)$ is a closed convex set for all $x \in \mathbb{R}$. We write f^* as follow

$$f^*(y) = \sup_{x \in \mathbb{R}} \{yx - f(x)\} = \sup_{x \in \mathbb{R}} \{h_x(y)\}.$$

This implies

$$\operatorname{epi}(f^*) = \sup_{x \in \mathbb{R}} \{\operatorname{epi}(h_x)\} = \bigcap_{x \in \mathbb{R}} \{\operatorname{epi}(h_x)\}$$

The intersection of closed convex sets is again closed convex which means that f^* is closed and convex.

Remark: f^* is called the Legendre Transformation.

(2) We use the fact that a closed convex function f can be written as the pointwise supremum of the collection of all affine functions h satisfying $h \leq f$.¹

$$f(x) = \sup\{h(x) = yx - \alpha : h \le f\} \qquad \forall x \in \mathbb{R}$$

This leads to

$$yx - \alpha \le f(x) \qquad \forall x \in \mathbb{R} \iff yx - f(x) \le \alpha \qquad \forall x \in \mathbb{R}$$
$$\iff \sup_{x \in \mathbb{R}} \{yx - f(x)\} \le \alpha$$
$$\iff f^*(y) \le \alpha$$
$$\iff (y, \alpha) \in \operatorname{epi}(f^*).$$

So we have

$$f(x) = \sup_{(y,\alpha) \in \operatorname{epi}(f^*)} \{yx - \alpha\} \quad \forall x \in \mathbb{R}.$$

For $(y, \alpha) \in \operatorname{epi}(f^*)$ we have that $yx - \alpha \leq yx - f^*(x)$, so

$$f(x) = \sup_{y \in \mathbb{R}} \{yx - f^*(x)\} \qquad \forall x \in \mathbb{R}$$
$$= f^{**}(x) \qquad \forall x \in \mathbb{R}.$$

(b) By definition of f^* , $f(x) \ge \sup_{x \in X^*} \{ < x^*, x > -f^*(x) \}$, $\forall x^* \in X^*$ so $f \ge f^{**}$. Let a an affine minorant of f, $a \le f$, so $a^* \ge f^*$ and $a^{**} \le f^{**}$. But since a is affine, $a^{**} = a$. So every affine minorant of f is an affine minorant of f^{**} . We know that if f is a l.s.c. and convex, then $f(x) := \sup_{a \le f} \{a(x)\}$ where the supremieum is taken over all continuous affine functionals on X. We conclude that $f \le f^{**}$.

¹see theorem 12.1 in *Convex Analysis* of R.Tyrrell Rockafellar.

(c) If $f(x) = \delta(x|C)$ for an non empty convex cone then $f^*(x^*) = \delta(x^*|C^\circ)$ for a certain non convex cone which must be closed since f^* is closed. The *conjugate* of $f^*(\cdot) = \delta(\cdot|C^\circ)$ is $f^{**}(\cdot) = \delta(\cdot|C^\circ)$. So we obtain that

$$\begin{split} f(x) &= f^{**}(x) \iff \quad \delta(x|C) = \delta(x|C^{\circ\circ}) \\ \iff \quad C &= C^{\circ\circ} \,. \end{split}$$

Remark: Theorem 14.1 in Convex Analysis of R.Tyrrell Rockafellar.