Introduction to Mathematical Finance
 Solution sheet 6

Solution 6.1

(a) If $\left(N_{t}\right)_{t \in\{0, \ldots, T\}}$ a numeraire, $\left(\frac{S_{t}}{B_{t}}\right)_{t}$ is a Q-EMM $\Longleftrightarrow\left(\frac{S_{t}}{N_{t}}\right)_{t}$ is a Q^{N}-EMM where

$$
\left.\frac{d Q^{N}}{d Q}\right|_{\mathcal{F}_{t}}=\frac{N_{T} / N_{t}}{B_{T} / B_{t}}
$$

(b) The forward Libor rate $(L(t, T, T+\delta))_{t}$ is a martingale under the forward probability.

$$
\begin{aligned}
L(t, T, T+\delta) & =\frac{1}{\delta}\left(\frac{1}{P(t, T, T+\delta)}-1\right) \\
& =\frac{1}{\delta}\left(\frac{P(t, T)}{P(t, T+\delta)}-1\right)
\end{aligned}
$$

By the numeraire change theorem, if we take as numeraire the zero-coupon bond $\left(N_{t}\right)_{t \in\{0, . ., T\}}=$ $(P(t, T+\delta))_{t \in\{0, \ldots, T\}}$ then we have that

$$
\begin{aligned}
\left(\frac{P(t, T)}{B_{t}}\right)_{t} \text { is a } Q \text {-EMM } & \Longleftrightarrow\left(\frac{P(t, T)}{P(t, T+\delta)}\right)_{t} \text { is a } Q^{T+\delta}-\mathrm{EMM} \\
& \Longleftrightarrow\left(\frac{1}{\delta}\left(\frac{P(t, T)}{P(t, T+\delta)}-1\right)\right)_{t} \text { is a } Q^{T+\delta}-\mathrm{EMM} \\
& \Longleftrightarrow(L(t, T, T+\delta))_{t} \text { is a } Q^{T+\delta}-\mathrm{EMM}
\end{aligned}
$$

The arbitrage free price of a caplet with payoff $\mathrm{C}^{\text {caplet }}=\delta(L(t, T, T+\delta)-K)_{+}$is

$$
\begin{aligned}
\pi\left(\mathrm{C}^{\text {caplet }}\right) & =E_{t}^{Q}\left(\frac{\mathrm{C}^{\text {caplet }}}{B_{T+\delta} / B_{t}}\right) \\
& =B_{t} E_{t}^{Q}\left(\frac{\delta(L(T, T, T+\delta)-K)_{+}}{B_{T+\delta}}\right) \\
& =B_{t} E_{t}^{Q^{N}}\left(\left.\frac{d Q}{d Q^{N}}\right|_{\mathcal{F}_{t}} \frac{\delta(L(T, T, T+\delta)-K)_{+}}{B_{T+\delta}}\right) \\
& =B_{t} E_{t}^{Q^{N}}\left(\frac{B_{T+\delta} / B_{t}}{N_{T+\delta} / N_{t}} \frac{\delta(L(T, T, T+\delta)-K)_{+}}{B_{T+\delta}}\right) \\
& =N_{t} E_{t}^{Q^{N}}\left(\frac{\delta(L(T, T, T+\delta)-K)_{+}}{N_{T+\delta}}\right) .
\end{aligned}
$$

The numeraire here is the zero-coupon $N_{t}=P(t, T+\delta)$.

$$
\begin{aligned}
\pi\left(\mathrm{C}^{\text {caplet }}\right) & =P(t, T+\delta) E_{t}^{Q^{T+\delta}}\left(\frac{\delta(L(T, T, T+\delta)-K)_{+}}{P(T+\delta, T+\delta)}\right) \\
& =P(t, T+\delta) E_{t}^{Q^{T+\delta}}\left(\delta(L(T, T, T+\delta)-K)_{+}\right)
\end{aligned}
$$

(c) The swap rate $\left(S_{T_{0}, T_{N}}(t)\right)_{t}$ is a martingale under the forward probability.

$$
\begin{aligned}
\left(\frac{P\left(t, T_{i}\right)}{B_{t}}\right)_{t} \text { is a } Q-\mathrm{EMM}(i=0, N) & \Longleftrightarrow\left(\frac{P\left(t, T_{i}\right)}{A(t)}\right)_{t} \text { is a } Q^{A}-\operatorname{EMM}(i=0, N) \\
& \Longleftrightarrow\left(\frac{P\left(t, T_{0}\right)-P\left(t, T_{N}\right)}{A(t)}\right)_{t} \text { is a } Q^{A}-\mathrm{EMM} \\
& \Longleftrightarrow\left(S_{T_{0}, T_{N}}(t)\right)_{t} \text { is a } Q^{A}-\mathrm{EMM}
\end{aligned}
$$

The arbitrage free price of a swaption with payoff $\mathrm{C}^{\text {swaption }}=A\left(T_{f}\right)\left(S_{T_{0}, T_{N}}(t)-K\right)_{+}$is

$$
\begin{aligned}
\pi\left(\mathrm{C}^{\text {swaption }}\right) & =E_{t}^{Q}\left(\frac{\mathrm{C}^{\text {swaption }}}{B_{T} / B_{t}}\right) \\
& =B_{t} E_{t}^{Q}\left(\frac{A\left(T_{f}\right)\left(S_{T_{0}, T_{N}}\left(T_{f}\right)-K\right)_{+}}{B_{T}}\right) \\
& =A(t) E_{t}^{Q^{A}}\left(\frac{A\left(T_{f}\right)\left(S_{T_{0}, T_{N}}\left(T_{f}\right)-K\right)_{+}}{A\left(T_{f}\right)}\right) \\
& =A(t) E_{t}^{Q^{A}}\left(\left(S_{T_{0}, T_{N}}\left(T_{f}\right)-K\right)_{+}\right)
\end{aligned}
$$

Solution 6.2

(a) Book chapter 5.5.2
(b) Book chapter 5.6.1
(c) Book chapter 5.53
(d) Book chapter 5.62

Solution 6.3

(a) Let us compute the characteristic function of Z_{n} :

$$
\begin{aligned}
\phi_{Z_{n}}(z) & =\mathbb{E}\left[e^{i z Z_{n}}\right] \\
& =\mathbb{E}\left[e^{i z \sum_{i=1}^{n} X_{i}^{n}}\right] \\
& =\prod_{i=1}^{n} \mathbb{E}\left[e^{i z X_{i}^{n}}\right] \\
& =\mathbb{E}\left[e^{i z X_{1}^{n}}\right]^{n}
\end{aligned}
$$

where we get the third equality by independence of the X_{i}^{n}, and the fourth because they are identically distributed. A Taylor expansion gives :

$$
\mathbb{E}\left[e^{i z X_{1}^{n}}\right]=\left(1+i z \mu_{n}-\frac{z^{2} \sigma^{2} T}{2 n}+o\left(\frac{1}{n}\right)\right)
$$

Hence $\lim _{n \rightarrow \infty} \phi_{Y_{n}}(z)=\exp \left(i z \mu-\frac{\sigma^{2} z^{2} T}{2}\right)$, which is continuous at 0 and the characteristic function of a normal random variable with mean μ and variance $\sigma^{2} T$.
(b) The price at time 0 of an attainable claim is given by the expected value under an equivalent martingale measure of its discounted payoff :

$$
\begin{aligned}
V_{0}^{P, N} & =\frac{\mathbb{E}^{*}\left[\left(K-\widetilde{S}_{N}^{1}\right)^{+}\right]}{(1+r)^{N}} \\
& =\frac{\mathbb{E}^{*}\left[\left(K-S_{0}^{1} \prod_{i=1}^{N} Y_{i}\right)^{+}\right]}{(1+r)^{N}} \\
& =\mathbb{E}^{*}\left[\left(\frac{K}{(1+r)^{N}}-S_{0}^{1} \exp \left(Z_{N}\right)\right)^{+}\right]
\end{aligned}
$$

where $Z_{N}=\sum_{i=1}^{N} \log \left(\frac{Y_{i}}{1+r}\right)$.
(c) By assumption, $\log \left(\frac{Y_{i}}{1+r}\right)$ is valued in $\left\{-\sigma \sqrt{\frac{T}{N}}, \sigma \sqrt{\frac{T}{N}}\right\}$ and the Y_{i} 's are i.i.d. under \mathbb{P}^{*}. Furthermore we have :

$$
\begin{aligned}
\mathbb{E}^{*}\left[\log \left(\frac{Y_{i}}{1+r}\right)\right] & =-p^{*} \sigma \sqrt{\frac{T}{N}}+\left(1-p^{*}\right) \sigma \sqrt{\frac{T}{N}} \\
& =\left(1-2 p^{*}\right) \sigma \sqrt{\frac{T}{N}} \\
& =\left(1-2 \frac{u-r}{u-d}\right) \sigma \sqrt{\frac{T}{N}} \\
& =\left(1-2 \frac{e^{\sigma \sqrt{\frac{T}{N}}}\left(1+\frac{R T}{N}\right)-1-\frac{R T}{N}}{e^{\sigma \sqrt{\frac{T}{N}}}\left(1+\frac{R T}{N}\right)-e^{-\sigma \sqrt{\frac{T}{N}}}\left(1+\frac{R T}{N}\right)}\right) \sigma \sqrt{\frac{T}{N}} \\
& =\frac{2-e^{\sigma \sqrt{\frac{T}{N}}}-e^{-\sigma \sqrt{\frac{T}{N}}}}{e^{\sigma \sqrt{\frac{T}{N}}-e^{-\sigma \sqrt{\frac{T}{N}}}} \sigma \sqrt{\frac{T}{N}}} \\
& =\frac{2-\left(1+\sigma \sqrt{\frac{T}{N}}+\frac{\sigma^{2} T}{2 N}+o\left(\frac{1}{N}\right)\right)-\left(1-\sigma \sqrt{\frac{T}{N}}+\frac{\sigma^{2} T}{2 N}+o\left(\frac{1}{N}\right)\right)}{\left(1+\sigma \sqrt{\frac{T}{N}}+\frac{\sigma^{2} T}{2 N}+o\left(\frac{1}{N}\right)\right)-\left(1-\sigma \sqrt{\frac{T}{N}}+\frac{\sigma^{2} T}{2 N}+o\left(\frac{1}{N}\right)\right)} \sigma \sqrt{\frac{T}{N}} \\
& =\frac{-\frac{\sigma^{2} T}{N}+o\left(\frac{1}{N}\right)}{2 \sigma \sqrt{\frac{T}{N}}+o\left(\frac{1}{N}\right)} \sigma \sqrt{\frac{T}{N}} \\
& =\frac{-\frac{\sigma^{2} T}{N}+o\left(\frac{1}{N}\right)}{2+o\left(\sqrt{\frac{1}{N}}\right)} \\
& =-\frac{\sigma^{2} T}{2 N}+o\left(\frac{1}{N}\right)
\end{aligned}
$$

and we can use the result proved in a) with $\mu=-\frac{\sigma^{2} T}{2}$.
Consider the function $f(z)=\left(K e^{-R T}-S_{0} e^{y}\right)^{+}$and the difference :

$$
\begin{aligned}
\left|V_{0}^{P, N}-\mathbb{E}^{*}\left[f\left(Z_{N}\right)\right]\right| & =\left|\mathbb{E}^{*}\left[\left(\frac{K}{(1+r)^{N}}-S_{0}^{1} \exp \left(Z_{N}\right)\right)^{+}\right]-\mathbb{E}^{*}\left[\left(K e^{-R T}-S_{0}^{1} \exp \left(Z_{N}\right)\right)^{+}\right]\right| \\
& \leqslant K\left|\left(1+\frac{R T}{N}\right)^{-N}-e^{-R T}\right|
\end{aligned}
$$

Hence, we have $\lim _{N \rightarrow \infty} V_{0}^{P, N}=\lim _{N \rightarrow \infty} \mathbb{E}^{*}\left[f\left(Z_{N}\right)\right]$. And since f is bounded and continuous, and the sequence $\left(Z_{N}\right)_{N \in \mathbb{N}}$ converges in law to a normal random variable with mean $\mu=-\frac{\sigma^{2} T}{2}$ and variance $\sigma^{2} T$, we have :

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \mathbb{E}^{*}\left[f\left(Z_{N}\right)\right]= & \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(K e^{-R T}-S_{0} e^{\sigma \sqrt{T} y-\frac{\sigma^{2} T}{2}}\right)^{+} e^{-\frac{y^{2}}{2}} d y \\
= & K e^{-R T} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathbb{1}_{\left\{K e^{-R T} \geqslant S_{0} e^{\sigma \sqrt{T} y-\frac{\sigma^{2} T}{2}}\right\}} e^{-\frac{y^{2}}{2}} d y \\
& -S_{0} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathbb{1}_{\left\{K e^{-R T} \geqslant S_{0} e^{\sigma \sqrt{T} y-\frac{\sigma^{2} T}{2}}\right\}} e^{\sigma \sqrt{T} y-\frac{\sigma^{2} T}{2}} e^{-\frac{y^{2}}{2}} d y \\
= & K e^{-R T} \Phi\left(-d_{2}\right)-S_{0} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-d_{2}} e^{-\frac{1}{2}(y-\sigma \sqrt{T})^{2}} d y \\
= & K e^{-R T} \Phi\left(-d_{2}\right)-S_{0} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-d_{1}} e^{-\frac{1}{2} y^{2}} d y \\
= & K e^{-R T} \Phi\left(-d_{2}\right)-S_{0} \Phi\left(-d_{1}\right)
\end{aligned}
$$

Which gives the result.
Solution 6.4 The solution will be given the next week.

