Introduction to Mathematical Finance

Exercise sheet 7

Exercise 7.1 Let $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ be a binomial model with $\widetilde{S}_{0}^{1}:=1$ and $u>r>d>-1$. Denote by $\left(\widehat{S}^{0}, \widehat{S}^{1}\right)$ the market discounted with \widetilde{S}^{1}, i.e.

$$
\widehat{S}^{0}:=\frac{\widetilde{S}^{0}}{\widetilde{S}^{1}} \quad \text { and } \quad \widehat{S}^{1}:=\frac{\widetilde{S}^{1}}{\widetilde{S}^{1}} \equiv 1
$$

(a) Show that there exists a unique equivalent martingale measure $Q^{* *}$ for \widehat{S}^{0}.
(b) Let Q^{*} be the unique equivalent martingale measure for S^{1}. Show that the density of $Q^{* *}$ with respect to Q^{*} on \mathcal{F}_{T} is given by

$$
\frac{\mathrm{d} Q^{* *}}{\mathrm{~d} Q^{*}}=S_{T}^{1}
$$

(c) Show that for an undiscounted payoff $\widetilde{H} \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$ we have

$$
\widetilde{S}_{k}^{0} E_{Q^{*}}\left[\left.\frac{\widetilde{H}}{\widetilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{k}\right]=\widetilde{S}_{k}^{1} E_{Q^{* *}}\left[\left.\frac{\widetilde{H}}{\widetilde{S}_{T}^{1}} \right\rvert\, \mathcal{F}_{k}\right], \quad k=0, \ldots, T .
$$

This formula shows that the risk-neutral pricing method is invariant under the so-called change of numéraire.

Exercise 7.2 Consider the trinomial model with $r=0.05$ and $T=1$. Suppose that the evolution of $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ is given by

$$
\widetilde{S}_{0}^{1}=S_{0}^{1}=s_{0}=80, \quad \widetilde{S}_{1}^{1}=\left\{\begin{array}{lr}
120 & \text { with probability } 0.2 \\
90 & 0.3 \\
60 & 0.5
\end{array}, \text { and } \widetilde{S}_{k}^{0}=(1+r)^{k}, \text { for } k \in\{0,1\} .\right.
$$

(a) Compute the set of all arbitrage-free prices for the European call option $\widetilde{H}=\left(\widetilde{S}_{1}^{1}-80\right)^{+}$.
(b) Find the set of all attainable contingent claims.
(c) Is it possible to replicate the previous call option by a self-financing portfolio?

Exercise 7.3 Let X be any adapted, integrable process.
(a) Show that there exist a martingale $M=\left(M_{k}\right)_{k \in \mathbb{N}_{0}}$ and a predictable process $A=\left(A_{k}\right)_{k \in \mathbb{N}}$ with $A_{0}:=0$ and

$$
X_{k}=X_{0}+M_{k}+A_{k} \quad P \text {-a.s. }
$$

for $k \in \mathbb{N}_{0}$ and $M_{0}=A_{0}=0 P$-a.s.
(b) Show that M and A are unique up to identification P-a.s.
(c) Show that X is a supermartingale if and only if A is decreasing, i.e., $A_{k+1} \leq A_{k} P$-a.s. for all $k \in \mathbb{N}_{0}$. (So then we can write $X=X_{0}+M-B$ with an increasing predictable process B null at 0.)

Exercise 7.4 Python - Trinomial model Inspire yourself from binomial price array to complete the trinomial price function.

```
def trinomial_price(maturity, spot, strike, rate, vol, steps_number, payoff_fct
    =None, graph_name=None):
"""Compute the trinomial price. Draw graph if graph_name is given.
"""
"""Compute the trinomial price. Draw graph if graph_name is given.
"""
deltaT = maturity / steps_number
discount_factor = exp(-rate * deltaT)
up = exp(vol * sqrt(2*deltaT))
down = 1 / up
denominator = exp(vol * sqrt(deltaT/2)) - exp(-vol * sqrt(deltaT/2))
proba_up = ((exp(rate * deltaT/2) - exp(-vol * sqrt(deltaT/2))) / denominator
    ) ** 2
proba_down = ((exp(vol * sqrt(deltaT/2))- exp(rate * deltaT/2)) / denominator
    ) ** 2
    proba_middle = 1 - proba_up - proba_down
    steps = range(steps_number)
    spot_prices = [spot * up ** i for i in reversed(steps[1:])] + [spot] + [spot
    * down ** i for i in steps[1:]]
option_prices = [payoff_fct(spot_price, strike) for spot_price in spot_prices
    ]
# The following two list are only needed to display the graph:
spot_prices_history = [spot_prices]
option_prices_history = [option_prices]
    # TODO
    if graph_name:
        create_graph(graph_name, spot_prices_history, option_prices_history)
    return option_prices[0]
```

