Introduction to Mathematical Finance
 Solution sheet 7

Solution 7.1 Assume without loss of generality that $\Omega=\{1,2\}^{T}$ and $Y_{k}\left(\left(x_{1}, \ldots, x_{T}\right)\right)=1+y_{x_{k}}$, where $y_{1}:=d$ and $y_{2}:=u$.
(a) First method. Any measure $Q \approx P$ on \mathcal{F}_{T} can be described by its transition probabilities $q_{x_{1}}, q_{x_{1}, x_{2}}, \ldots, q_{x_{1}, \ldots, x_{T}}$, where $x_{1}, \ldots, x_{k} \in\{1,2\}$ and

$$
\begin{align*}
q_{x_{1}} & :=Q\left[Y_{1}=1+y_{x_{1}}\right] \\
q_{x_{1}, \ldots, x_{k}} & :=Q\left[Y_{k}=1+y_{x_{k}} \mid Y_{1}=1+y_{x_{1}}, \ldots, Y_{k-1}=1+y_{x_{k-1}}\right], \quad k=2, \ldots, T . \tag{1}
\end{align*}
$$

Since \widehat{S}^{1} is finitely valued (and hence bounded) and adapted, it is a Q-martingale if and only if for all $k=0, \ldots, T-1$, we have

$$
\begin{equation*}
E_{Q}\left[\widehat{S}_{k+1}^{0} \mid \mathcal{F}_{k}\right]=\widehat{S}_{k}^{0} \quad Q \text {-a.s. } \tag{2}
\end{equation*}
$$

By definition of \widehat{S}^{0} and since it is strictly positive, the martingale property (2) holds if and only if

$$
E_{Q}\left[\left.\widehat{S}_{k}^{0} \frac{1+r}{Y_{k+1}} \right\rvert\, \mathcal{F}_{k}\right]=\widehat{S}_{k}^{0} \quad Q \text {-a.s. }
$$

which holds if and only if

$$
E_{Q}\left[\left.\frac{1+r}{Y_{k+1}} \right\rvert\, \mathcal{F}_{k}\right]=1 \quad Q \text {-a.s. }
$$

Note that we do not know a priori whether the Y_{k} are independent under Q. Since $\mathcal{F}_{0}=\{\emptyset, \Omega\}$, $\mathcal{F}_{k}=\sigma\left(Y_{1}, \ldots, Y_{k}\right)$ for $k=1, \ldots T$, and Y_{k} only takes two values, \widehat{S}^{0} is an Q-martingale if and only if $E_{Q}\left[\frac{1+r}{Y_{1}}\right]=1$ and for all $k \in\{1, \ldots, T-1\}$ and all $x_{1}, \ldots, x_{k} \in\{1,2\}$ we have

$$
\begin{equation*}
E_{Q}\left[\left.\frac{1+r}{Y_{k+1}} \right\rvert\, Y_{1}=1+y_{x_{1}}, \ldots, Y_{k}=1+y_{x_{k}}\right]=1 \tag{3}
\end{equation*}
$$

Now, we have

$$
\begin{align*}
E_{Q}\left[\frac{1+r}{Y_{1}}\right]=1 & \Leftrightarrow \quad \frac{1+r}{1+d} q_{1}+\frac{1+r}{1+u}\left(1-q_{1}\right)=1 \\
& \Leftrightarrow \quad\left(\frac{1+u}{1+d}-1\right) q_{1}=\frac{1+u}{1+r}-1 \\
& \Leftrightarrow \quad \frac{u-d}{1+d} q_{1}=\frac{u-r}{1+r} \\
& \Leftrightarrow q_{1}=\frac{1+d}{1+r} \frac{u-r}{u-d} \tag{4}
\end{align*}
$$

Similarly, for all $k \in\{1, \ldots, T-1\}$ and all $x_{1}, \ldots, x_{k} \in\{1,2\}$, we have

$$
E_{Q}\left[\left.\frac{1+r}{Y_{k+1}} \right\rvert\, Y_{1}=1+y_{x_{1}}, \ldots, Y_{k}=1+y_{x_{k}}\right]=1 \Leftrightarrow \quad q_{x_{1}, \ldots, x_{k}, 1}=\frac{1+d}{1+r} \frac{u-r}{u-d}
$$

Note that $q_{x_{1}, \ldots, x_{k}, 1}$ does not depend on x_{1}, \ldots, x_{k} and equals q_{1}. Hence, we may conclude that there exists a unique equivalent martingale measure $Q^{* *}$ for \widehat{S}^{0}, under which Y_{1}, \ldots, Y_{k} are i.i.d. and we have

$$
Q^{* *}[Y=1+d]=\frac{1+d}{1+r} \frac{u-r}{u-d}=: q_{1}^{* *} \quad \text { and } \quad Q^{* *}[Y=1+u]=\frac{1+u}{1+r} \frac{r-d}{u-d}=: q_{2}^{* *}
$$

Second method: For $k=1, \ldots, T$, set $\widehat{Y}_{k}=\frac{1+r}{Y_{k}}$. Then $\widehat{S}_{k}^{1}=1^{k}=1$ and $\widehat{S}_{k}^{0}=\prod_{j=1}^{k} \widehat{Y}_{j}$ for $k=0, \ldots, T$, where the \widehat{Y}_{k} are independent under P and take the two values $1+\hat{u}$ and $1+\hat{d}$ with probability p_{1} and p_{2}, respectively, where $\hat{u}=\frac{r-d}{1+d}>0$ and $\hat{d}=\frac{r-u}{1+u}<0$. In conclusion, $\left(\widehat{S}^{0}, \widehat{S}^{0}\right)$ can be viewed as a binomial model with $\hat{u}>\hat{r}=0>\hat{d}$.
Variant (i): Recalling that \hat{u} corresponds to p_{1} and \hat{d} to p_{2}, it follows that the unique equivalent martingale measure $Q^{* *}$ for \widehat{S}^{1} is given by

$$
\begin{equation*}
Q^{* *}\left[\left\{\left(x_{1}, \ldots, x_{T}\right\}\right]:=\prod_{k=1}^{T} q_{x_{k}}^{* *}, \quad x_{1}, \ldots, x_{T} \in\{1,2\}\right. \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
& q_{1}^{* *}=\frac{\hat{r}-\hat{d}}{\hat{u}-\hat{d}}=\frac{\frac{u-r}{1+u}}{\frac{r-d}{1+d}-\frac{r-u}{1+u}}=\frac{1+d}{1+r} \frac{u-r}{u-d} \\
& q_{2}^{* *}=\frac{\hat{u}-\hat{r}}{\hat{u}-\hat{d}}=\frac{\frac{r-d}{1+d}}{\frac{r-d}{1+d}-\frac{r-u}{1+u}}=\frac{1+u}{1+r} \frac{r-d}{u-d} \tag{6}
\end{align*}
$$

Variant (ii): We are looking for the unique strictly positive Q^{*}-martingale $Z^{Q^{* *} ; Q^{*}}$ starting at 1 such that

$$
\frac{\widetilde{S}^{0}}{\widetilde{S}^{1}} Z^{Q^{* *} ; Q^{*}} \text { is a } Q^{*} \text {-martingale. }
$$

But we already know that $\frac{\widetilde{S}^{1}}{\widetilde{S}^{0}}$ is a Q^{*}-martingale and strictly positive. Hence by uniqueness,

$$
Z^{Q^{* *} ; Q^{*}}=\frac{\widetilde{S}^{1}}{\widetilde{S}^{0}}=S^{1}
$$

(b) The unique equivalent martingale measure Q^{*} for $S^{1}=\frac{\widetilde{S}^{1}}{S^{0}}$ on \mathcal{F}_{T} is given by

$$
\begin{equation*}
Q^{*}\left[\left\{\left(x_{1}, \ldots, x_{T}\right)\right\}\right]:=\prod_{j=1}^{T} q_{x_{j}}^{*} \tag{7}
\end{equation*}
$$

where $q_{1}^{*}=\frac{u-r}{u-d}$ and $q_{2}^{*}=\frac{r-d}{u-d}$. By part (a), we have

$$
\begin{equation*}
\frac{q_{1}^{* *}}{q_{1}^{*}}=\frac{1+d}{1+r} \quad \text { and } \quad \frac{q_{2}^{* *}}{q_{2}^{*}}=\frac{1+u}{1+r} \tag{8}
\end{equation*}
$$

Thus, since Ω is finite, we may deduce that for all $\left(x_{1}, \ldots, x_{T}\right) \in\{1,2\}^{T}$ we have

$$
\begin{align*}
\frac{\mathrm{d} Q^{* *}}{\mathrm{~d} Q^{*}}\left(\left(x_{1}, \ldots, x_{T}\right)\right) & =\frac{Q^{* *}\left[\left\{\left(x_{1}, \ldots, x_{T}\right)\right\}\right]}{Q^{*}\left[\left\{\left(x_{1}, \ldots, x_{T}\right)\right\}\right]}=\prod_{k=1}^{T} \frac{q_{x_{k}}^{* *}}{q_{x_{k}}^{*}} \\
& =\frac{\prod_{k=1}^{T}\left(1+y_{x_{k}}\right)}{(1+r)^{T}}=\frac{\prod_{k=1}^{T} Y_{k}\left(\left(x_{1}, \ldots, x_{T}\right)\right)}{(1+r)^{k}} \\
& =\frac{\widetilde{S}_{T}^{1}\left(\left(x_{1}, \ldots, x_{T}\right)\right)}{\widetilde{S}_{T}^{0}\left(\left(x_{1}, \ldots, x_{T}\right)\right)} \tag{9}
\end{align*}
$$

(c) Denote by Z the density process of $Q^{* *}$ with respect to Q^{*}. Let $k \in\{1, \ldots, T\}$ and $\widetilde{H} \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$. Since $Z_{T}=\frac{\widetilde{S}_{T}^{1}}{\widetilde{S}_{T}^{0}}=S_{T}^{1}$ by part (b) and S^{1} is a Q^{*}-martingale, it follows by the definition of a density process that for $k=0, \ldots, T$ we have

$$
\begin{equation*}
Z_{k}=E_{Q^{*}}\left[Z_{T} \mid \mathcal{F}_{k}\right]=E_{Q^{*}}\left[S_{T}^{1} \mid \mathcal{F}_{k}\right]=S_{k}^{1}=\frac{\widetilde{S}_{k}^{1}}{\widetilde{S}_{k}^{0}} \quad Q^{*} \text {-a.s. } \tag{10}
\end{equation*}
$$

Thus, by the Bayes formula we get for $k=0, \ldots, T$

$$
\begin{equation*}
\widetilde{S}_{k}^{1} E_{Q^{* *}}\left[\left.\frac{\widetilde{H}}{\widetilde{S}_{T}^{1}} \right\rvert\, \mathcal{F}_{k}\right]=\frac{\widetilde{S}_{k}^{1}}{Z_{k}} E_{Q^{*}}\left[\left.\frac{Z_{T} \widetilde{H}}{\widetilde{S}_{T}^{1}} \right\rvert\, \mathcal{F}_{k}\right]=\widetilde{S}_{k}^{0} E_{Q^{*}}\left[\left.\frac{\widetilde{H}}{\widetilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{k}\right] \tag{11}
\end{equation*}
$$

Solution 7.2 We use the following notations:

$$
S_{0}^{1}=80, \quad \tilde{S}_{1}^{1}=\left\{\begin{array}{lr}
80\left(1+y_{1}\right) \\
80\left(1+y_{2}\right) \\
80\left(1+y_{3}\right) & \text { with probability } p_{1}=0.2 \\
p_{2}=0.3 \\
p_{3}=0.5
\end{array}\right.
$$

with $y_{1}=\frac{1}{2}, y_{2}=\frac{1}{8}, y_{3}=-\frac{1}{4}$. Let $q_{i}=\mathbb{Q}\left[\left\{\tilde{S}_{1}^{1}=s_{0}\left(1+y_{i}\right)\right\}\right]$.
(a) We work on the (finite) path space Ω and use the filtration generated by the price process. S^{1} is therefore adapted and integrable, it is then a martingale under \mathbb{Q} if and only if $\mathbb{E}_{\mathbb{Q}}\left[S_{1}^{1}\right]=S_{0}^{1}$.

$$
\begin{aligned}
\mathbb{E}_{\mathbb{Q}}\left[S_{1}^{1}\right]=S_{0}^{1} & \Leftrightarrow \mathbb{E}_{\mathbb{Q}}\left[\tilde{S}_{1}^{1}\right]=S_{0}^{1}(1+r) \\
\mathbb{Q} \text { is an EMM } & \Leftrightarrow\left\{\begin{array}{l}
120 q_{1}+90 q_{2}+60 q_{3}=80 \cdot 1.05 \\
q_{1}+q_{2}+q_{3}=1 \\
0<q_{1}, q_{2}, q_{3}<1
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
q_{2}=0.8-2 q_{1} \\
q_{3}=0.2+q_{1} \\
q_{1} \in(0,0.4)
\end{array}\right.
\end{aligned}
$$

The set of all equivalent martingale measures is given by

$$
P_{e}(S)=\left\{\mathbb{Q}_{\lambda}=(\lambda, 0.8-2 \lambda, 0.2+\lambda) \mid \lambda \in(0,0.4)\right\} .
$$

The set of all arbitrage-free prices is given by (we can use the risk-neutral valuation formula)

$$
\begin{aligned}
C & =\left\{c_{\lambda}: \left.=\mathbb{E}_{\mathbb{Q}_{\lambda}}\left[\frac{\left(\tilde{S}_{1}^{1}-80\right)^{+}}{1+r}\right] \right\rvert\, \lambda \in(0,0.4)\right\} \\
& =\left\{\left.c_{\lambda}=\frac{1}{1.05}(40 \cdot \lambda+10(0.8-2 \lambda)) \right\rvert\, \lambda \in(0,0.4)\right\} \\
& =\left\{\left.c_{\lambda}=\frac{1}{1.05}(20 \lambda+8) \right\rvert\, \lambda \in(0,0.4)\right\}
\end{aligned}
$$

This set is the whole open interval $(7.619,15.238)$.
(b) $\tilde{H} \in L_{+}^{0}$ can be replicated if there exists an admissible self-financing strategy $\varphi=\left(\varphi^{0}, \vartheta\right)$ such that

$$
\varphi_{1}^{0}(1+r)+\vartheta_{1} \tilde{S}_{1}^{1}=\tilde{H}
$$

Let $\tilde{H}^{y_{i}}$ be the value of the payoff if $\tilde{S}_{1}^{1}=s_{0}\left(1+y_{i}\right)$, we are looking for non trivial solutions of the following system:

$$
\left[\begin{array}{cc}
1.05 & 120 \\
1.05 & 90 \\
1.05 & 60
\end{array}\right] \cdot\left[\begin{array}{l}
\varphi_{1}^{0} \\
\vartheta_{1}
\end{array}\right]=\left[\begin{array}{c}
\tilde{H}^{y_{1}} \\
\tilde{H}^{y_{2}} \\
\tilde{H}^{y_{3}}
\end{array}\right]
$$

This system admits non trivial solutions if and only if

$$
\operatorname{det}\left[\begin{array}{ccc}
1.05 & 120 & \tilde{H}^{y_{1}} \\
1.05 & 90 & \tilde{H}^{y_{2}} \\
1.05 & 60 & \tilde{H}^{y_{3}}
\end{array}\right]=0
$$

In order to be attainable a contingent claim must satisfy

$$
-\tilde{H}^{y_{1}}+2 \tilde{H}^{y_{2}}-\tilde{H}^{y_{3}}=0
$$

(c) It's easy to check that our call option doesn't satisfy the previous equation.

Solution 7.3

(a) Define the processes by

$$
M_{k}=\sum_{j=1}^{k}\left(X_{j}-E\left[X_{j} \mid \mathcal{F}_{j-1}\right]\right)
$$

and

$$
A_{k}=\sum_{j=1}^{k}\left(E\left[X_{j} \mid \mathcal{F}_{j-1}\right]-X_{j-1}\right)
$$

These processes are well-defined since X is integrable. Note that both processes are integrable, M is adapted, and A is predictable. Furthermore,

$$
E\left[\Delta M_{k+1} \mid \mathcal{F}_{k}\right]=E\left[X_{k+1}-E\left[X_{k+1} \mid \mathcal{F}_{k}\right] \mid \mathcal{F}_{k}\right]=0 \quad P \text {-a.s. }
$$

Hence, M is a martingale.
(b) Suppose that also M^{\prime} and A^{\prime} satisfy $X=X_{0}+M^{\prime}+A^{\prime}=X_{0}+M+A$. Then $M^{\prime}-M=A-A^{\prime}$. Denote this process by Y and observe that it is both a martingale and predictable. Thus,

$$
Y_{k-1}=E\left[Y_{k} \mid \mathcal{F}_{k-1}\right]=Y_{k} \quad P \text {-a.s. }
$$

hence Y is constant. Since $M_{0}=M_{0}^{\prime}=0 P$-a.s., $Y=0 P$-a.s., showing that the decomposition is almost surely unique.
(c) Suppose X is a supermartingale. Then, for every $k \in \mathbb{N}_{0}$,

$$
0 \geq E\left[\Delta X_{k+1} \mid \mathcal{F}_{k}\right]=E\left[\Delta M_{k+1}+\Delta A_{k+1} \mid \mathcal{F}_{k}\right]=\Delta A_{k+1} \quad P \text {-a.s. }
$$

where we use that M is a martingale and A is predictable. This shows that $A_{k+1} \leq A_{k} P$-a.s. For the converse, suppose $\Delta A_{k+1} \leq 0 P$-a.s. Then,

$$
E\left[\Delta X_{k+1} \mid \mathcal{F}_{k}\right]=E\left[\Delta M_{k+1}+\Delta A_{k+1} \mid \mathcal{F}_{k}\right] \leq E\left[\Delta M_{k+1} \mid \mathcal{F}_{k}\right]=0 \quad P \text {-a.s. }
$$

for all $k \in \mathbb{N}_{0}$. We thus conclude that X is a supermartingale.

Solution 7.4

```
def trinomial_price(maturity, spot, strike, rate, vol, steps_number, payoff_fct
        =None, graph_name=None):
    """Compute the trinomial price. Draw graph if graph_name is given.
    """
    deltaT = maturity / steps_number
    discount_factor = exp(-rate * deltaT)
```

```
up = exp(vol * sqrt(2*deltaT))
down = 1 / up
denominator = exp(vol * sqrt(deltaT/2)) - exp(-vol * sqrt(deltaT/2))
proba_up = ((exp(rate * deltaT/2) - exp(-vol * sqrt(deltaT/2))) / denominator
    ) ** 2
proba_down = ((exp(vol * sqrt(deltaT/2))- exp(rate * deltaT/2)) / denominator
    ) ** 2
proba_middle = 1 - proba_up - proba_down
steps = range(steps_number)
spot_prices = [spot * up ** i for i in reversed(steps[1:])] + [spot] + [spot
    * down ** i for i in steps[1:]]
option_prices = [payoff_fct(spot_price, strike) for spot_price in spot_prices
    ]
# The following two list are only needed to display the graph:
spot_prices_history = [spot_prices]
option_prices_history = [option_prices]
def next_option_price(spot_price, price_up, price_midlle, price_down):
    option_price = (discount_factor *(proba_up * price_up +
                                    proba_middle * price_midlle +
                                    proba_down * price_down))
while len(option_prices) > 1:
    option_prices = [next_option_price(spot_prices[i], *option_prices[i-1:i+2])
                for i in range(1, len(option_prices)-1)]
    spot_prices = spot_prices[1:-1]
    spot_prices_history.insert(0, spot_prices)
    option_prices_history.insert(0, option_prices)
if graph_name:
    create_graph(graph_name, spot_prices_history, option_prices_history)
return option_prices[0]
```

