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Solution 7.1 Assume without loss of generality that Q = {1,2}7 and Yy ((z1,...,27)) = 1 + ya,,
where y; := d and ys := u.

(a) First method. Any measure Q ~ P on Fr can be described by its transition probabilities
qzq, q;Cl,ﬂsz ey q331,...,:cT7 WhCI‘C L1y «-ey Tk € {1’2} a’nd

qa:l = Q[Yi = 1 +yw1]7
qzy,...,xp = Q[Yk:1+yzk|yl:1+yx17~'~aykfl:]—+yzk_1]7 k:27~~-7T~ (]-)

Since S! is finitely valued (and hence bounded) and adapted, it is a @-martingale if and only
if forall k =0,...,T — 1, we have

Eq [§2+1 ‘fk} =5) Q-as.. (2)
By definition of S and since it is strictly positive, the martingale property (2) holds if and
only if
1 N
[Sk tr fk} — 50 Q-as.,
Yit1
which holds if and only if
1
EQ |: tr .Fk:| =1 Q—a.s..
Yit1
Note that we do not know a priori whether the Y}, are independent under Q. Since Fy = {0, Q},
Fr=0(Y1,...,Y;) for k=1,...T, and Y}, only takes two values, S is an Q-martingale if
and only if EQ {1‘”} =1landforall ke {1,...,7—1} and all =1, ..., 2 € {1,2} we have
147
EQ[ lel—i—ym,...,Ykzl—i—yxk]:l. (3)
Yit1
Now, we have
1+7r 1+ T‘ 1 —|—
E =1 < 1-— 1
o |5 e ) =
< + u ) 1+u
<~ q1 = -1
14+d 1+7r
o U- d u—r
1+ d 1 +r
1+du—r
& = . 4
“=q +ru—d )

Similarly, for all k € {1,...,T — 1} and all 21, ..., z; € {1,2}, we have

1+7r
E
@ |:Yk+1

l+du—r
1+ru—d’

Y1:1+y117"'7yk:1+yzk =1l& Qxq,...,x1,1 =
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Note that g, ...,
that there exists a unique equivalent martingale measure Q** for S°, under which Y7, ..., Y3
are i.i.d. and we have

z1,1 does not depend on z1, ..., z; and equals ¢;. Hence, we may conclude

l1+du—r l+ur—d
—. *% d **Yzl — = **_
1+ru—d " and Q7 +ul 1+ru—d ?

Q“[Y =1+d =

Second method: For k=1, ..., T set ?k = 1},% Then :S'\,i =1F=1and §2 = H;Ll 17'] for
k=0, ..., T, where the )A/k are independent under P and take the two values l+dand1+d
with probability p; and ps, respectively, where 4 =

1+d
(59, 59) can be viewed as a binomial model with & > 7 = 0 > d.

Variant (i): Recalling that 4 corresponds to p; and d to p2, it follows that the unique
equivalent martingale measure Q** for S! is given by

Q™ [{(z1,...,2r}]: quk, zy,..., o7 € {1,2}, (5)
where
o P—d e l+du—r
q = = = — — =
Pa—d -t l4ru—d
L a—7 1= l+ur—d
92" = — 5T r=d r—u 1 d’ (6)
U—d  T5q7 T Tru—

Variant (ii): We are looking for the unique strictly positive Q*-martingale Z9 i@ starting
at 1 such that

The unique equivalent martingale measure Q* for S = % on Fr is given by

T
Q" [{("Tlv""xT)}] = HQ;ja (7)
j=1

where ¢f = =5 and ¢5 = 7=9. By part (a), we have
‘h* e Y (8)
qi 1+7 a5 1+r
Thus, since Q is finite, we may deduce that for all (z1,...,27) € {1,2}7 we have
Q™ CdUCI T %
Tiy.o.,T7)) =
dQ* (( 1 T)) Q* [{(3317 . kl:[ qu
T
_ [leey (14 %a) _ Hk:l Vi((#1,...,27))
(1+r)T (1+r)k

_ Sp((@1,.. - 7))
S%((Jfl, e ,xT))
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(¢) Denote by Z the density process of @Q** with respect to @*. Let k € {1,...,T} and

He LY (Fr). Since Zy = % = SL by part (b) and S! is a Q*-martingale, it follows by the
definition of a density process that for k =0, ..., T" we have
1 1 S
Zi = Eq+ [Zr | Fil = Eq- [S7 | Fi] = S = g% Q*-as. . (10)
k
Thus, by the Bayes formula we get for k=0, ..., T
p H S} ZrH = H
1 k 0
E ok = == 7E * = - E * = . 1].
Sk [S; Fr| =7 Fa 5 ’fk] Sk Eq ) fk] (11)
Solution 7.2 We use the following notations:
i 80(1+y1) with probability p; = 0.2
Sy = 80, St =12 80(1+ o) py =03 |
80(1 + y3) p3 = 0.5

with y1 = 3,92 = 2,y3 = —3. Let ¢; = Q [{S] = so(1 + %) }] -

(a) We work on the (finite) path space € and use the filtration generated by the price process. S*
is therefore adapted and integrable, it is then a martingale under @ if and only if Eq[S1] = S3.

EqlSi]=5; « Eq[Si]=5S3(1+7)
120¢; + 90g2 + 60g3 = 80 - 1.05
Q is an EMM <& a+qtg=1
0<q1,q2,93<1

g2 = 0.8 = 2q1
& 3=02+q
q1 € (0,0.4)

The set of all equivalent martingale measures is given by
P.(S)={Qx=()0.8—-2X02+X) | A€ (0,04)}.

The set of all arbitrage-free prices is given by (we can use the risk-neutral valuation formula)

.
C = {c:=Eqg, [%} A€ (0,0.4)}
= {on= 171)5 (40 A +10(0.8 — 2)\)) | A€ (0,0.4)}
- %05(20)\—#8) |\ € (0,0.4)}.

—~

This set is the whole open interval (7.619, 15.238).

(b) H € LY can be replicated if there exists an admissible self-financing strategy ¢ = (°, ) such
that 3 R
Let HY be the value of the payoff if 5’% = so(1 + y;), we are looking for non trivial solutions
of the following system:

1.05 90| -|%" Hv>

1.05 120 [0] HY
1.05 60 U1 HYs
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This system admits non trivial solutions if and only if

1.05 120 }:Iyl
det [1.05 90 HY2| =0
1.05 60 HY:

In order to be attainable a contingent claim must satisfy
AV 4 20 — [ =0

(c¢) It’s easy to check that our call option doesn’t satisfy the previous equation.

Solution 7.3

(a) Define the processes by

k
My, =Y (X, — E[X;|F; 1))
=1
and
k
A =Y (BIXG1Fj] = Xj)-
J=1

These processes are well-defined since X is integrable. Note that both processes are integrable,
M is adapted, and A is predictable. Furthermore,

E[AMk+1|]:k] = E[Xk+1 — E[Xk+1|]:k]|fk] =0 P-as.
Hence, M is a martingale.

(b) Suppose that also M’ and A’ satisfy X = Xo+M'+ A" = Xo+ M+ A. Then M'—M = A—A’.
Denote this process by Y and observe that it is both a martingale and predictable. Thus,

Yi—1 = E[Yi|Fe—1] =Y P-as.,

hence Y is constant. Since My = M) = 0 P-a.s., Y = 0 P-a.s., showing that the decomposition
is almost surely unique.

(¢) Suppose X is a supermartingale. Then, for every k € Ny,
0> E[AXj11|Fk]) = E[AM41 + AAps1|Fr] = AAgy1  P-as,

where we use that M is a martingale and A is predictable. This shows that Ax;1 < Ay P-a.s.
For the converse, suppose AAg1 < 0 P-a.s. Then,

E[AXk+1|fk] = E[AM}H_l + AAk_;,_l‘.Fk] < E[AMk+1|fk] =0 P-as.

for all £ € Nyg. We thus conclude that X is a supermartingale.

Solution 7.4

. def trinomial_price(maturity, spot, strike, rate, vol, steps_number, payoff_fct

=None, graph_name=None):
"""Compute the trinomial price. Draw graph if graph_name is given.
deltaT = maturity / steps_number
discount_factor = exp(—rate * deltaT)
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up = exp(vol * sqrt(2xdeltaT))

down = 1 / up

denominator = exp(vol * sqrt(deltaT/2)) — exp(—vol * sqrt(deltaT/2))

proba_up = ((exp(rate * deltaT/2) — exp(—vol * sqrt(deltaT/2))) / denominator
) kx 2

proba_down = ((exp(vol * sqrt(deltaT/2))— exp(rate * deltaT/2)) / denominator
) kx 2

proba_middle = 1 — proba_up — proba_down

steps = range(steps_number)

spot_prices = [spot * up ** i for i in reversed(steps[1:])] + [spot] + [spot
% down *x i for i in steps[1:]]

option_prices = [payoff_fct(spot_price, strike) for spot_price in spot_prices
]

# The following two list are only needed to display the graph:

spot_prices_history = [spot_prices]

option_prices_history = [option_prices]

def next_option_price(spot_price, price_up, price_midlle, price_down):
option_price = (discount_factor *x(proba_up * price_up +
proba_middle * price_midlle +
proba_down * price_down))

while len(option_prices) > 1:
option_prices = [next_option_price(spot_prices[i], *option_prices[i—1:i+2])
for i in range(l, len(option_prices)—1)]
spot_prices = spot_prices[l:—1]
spot_prices_history.insert(®, spot_prices)
option_prices_history.insert(®, option_prices)

if graph_name:
create_graph(graph_name, spot_prices_history, option_prices_history)

return option_prices[0]
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