Introduction to Mathematical Finance

Exercise sheet 8

Exercise 8.1 Let $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \geq 0}, \mathcal{P})$ be a filtered probability space. Prove the *Optional Sampling Theorem* in the discrete time case: Let $(X_n)_{n>0}$ be a martingale and τ a stopping time. Then

- (a) The stopped process $(X_{n \wedge \tau})_{n \geq 0}$ is a martingale.
- (b) If $P[\tau < \infty] = 1$ and $(X_{n \wedge \tau})_{n \ge 0}$ is uniformly integrable, then $E[X_{\tau}] = E[X_0]$.

Exercise 8.2 Let M be a *local martingale* which is bounded from below by -a for some $a \ge 0$ and is integrable at the initial time: $M_0 \in L^1(P)$. Show from the definitions that M is a supermartingale.

Exercise 8.3 An American option with maturity T and payoff process $U = (U_k)_{k=0,...,T}$, where U is an adapted process, is a contract between buyer and seller where the buyer has the right to stop the contract at any time $0 \le k \le T$ and then to receive the (discounted) payoff U_k . The buyer is allowed to choose as exercise time for the option any stopping time with values in $\{0, \ldots, T\}$. The goal of this exercise is to analyze the corresponding arbitrage-free price of an American option. With some effort, one can show that the arbitrage-free price process $\overline{V} = (\overline{V}_k)_{k=0,...,T}$ for an American option can be expressed by the backward recursive scheme

$$\overline{V}_T = U_T,$$

$$\overline{V}_k = \max\left\{U_k, E_Q\left[\left.\overline{V}_{k+1}\right|\mathcal{F}_k\right]\right\} \quad \text{for } k = 0, \dots, T-1,$$
(1)

where Q is an equivalent martingale measure for the considered market.

- (a) Give an economic argument why (1) is a reasonable.
- (b) Show that \overline{V} is the smallest Q-supermartingale dominating U, i.e., show that
 - 1. \overline{V} is a Q-supermartingale such that $\overline{V}_k \geq U_k$ P-a.s. for all $k = 0, \ldots, T$.
 - 2. if V' is a Q-supermartingale such that $V'_k \ge U_k$ P-a.s. for all k = 0, ..., T, then $V'_k \ge \overline{V}_k$ P-a.s. for all k = 0, ..., T.
- (c) Assume now that r > 0 so that the bank account is strictly increasing.
 - 1. Show that in the *put option* case, i.e., $U_j = \frac{1}{(1+r)^j} (\tilde{K} \tilde{S}_j^1)^+$, the price of an American option at time 0 is greater that the price of a European option, for large enough strikes \tilde{K} , i.e.,

$$\overline{V}_0 > V_0^{\widetilde{P}_T^{\widetilde{K}}},$$

for \widetilde{K} large enough, where $V_0^{\widetilde{P}_T^{\widetilde{K}}}$ denotes the discounted price at time 0 of a European put option with maturity T and strike price \widetilde{K} .

2. Show that in the *call option* case, i.e., $U_j = \frac{1}{(1+r)^j} (\widetilde{S}_j^1 - \widetilde{K})^+$, the price of the American call option and the European call option coincide. This means, show that

$$\overline{V}_0 = V_0^{\widetilde{C}_T^{\widetilde{K}}},$$

where $V_0^{\widetilde{C}_T^{\widetilde{K}}}$ denotes the price at time 0 of an European call option with maturity T and strike price \widetilde{K} .

Updated: April 12, 2017

1 / 2

Exercise 8.4 Python - American option

- (a) Change the trinomial price function to also handle American options.
- (b) Change the trinomial price function to also handle barrier conditions.