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Solution 8.1 Denote by (τn)n∈N a localizing sequence and let Y = M + a so that Y ≥ 0 P -a.s.
Then Y τn1{τn>0} is a nonnegative martingale for every n ∈ N. Note that since Y0 is integrable, we
can even drop the indicator function. Indeed,

Y τn

k = Y01{τn=0} + Y τn

k 1{τn>0},

where the first term is integrable, F0-measurable, and constant in k, hence a martingale.
Moreover, since τn ↗∞ P -a.s.

lim
n→∞

Y τn

k = Yk P -a.s.,

for every k ∈ N0. Condition (M1) is satisfied by assumption. By Fatou’s lemma,

E[Yk] = E
[
lim inf
n→∞

Y τn

k

]
≤ lim inf

n→∞
E[Y τn

k ] = lim inf
n→∞

E[Y τn
0 ] = E[Y0] <∞,

establishing (M2). Similarly,

E[Yk|Fj ] = E
[
lim inf
n→∞

Y τn

k |Fj
]

≤ lim inf
n→∞

E[Y τn

k |Fj ] = lim inf
n→∞

Y τn
j = Yj P -a.s.

for all j ≤ k, showing that Y , and therefore also M , is indeed a supermartingale.

Solution 8.2

(a) Suppose we are at time T − 1. We have two possibilities; either we exercise the option
immediately, in which case we get the payoff UT−1, or we don’t exercise the option, in which
case the price at time T − 1 of the payoff UT is given by its Q-conditional expectation given
FT−1. Naturally, one takes the maximum of these two possibilities. The price at time k is
argued similarly when we admit that V k+1 is the reasonable price at time k + 1.

(b) 1. In order to show that V is a Q-supermartingale dominating U , we have to check whether
(a) V is Q-integrable, adapted and dominates U .
(b) it satisfies the Q-supermartingale property for all k = 0, . . . , T , i.e.,

V k ≥ EQ
[
V k+1

∣∣Fk] P -a.s.

We argue (i) and (ii) inductively. By assumption, U is adapted, hence V T is FT -
measurable. Since V k is the maximum of two Fk-measurable random variables, it is
itself Fk-measurable. Hence, V is adapted. The integrability is trivially satisfied since
we work with a finite probability space.
Next, V T = UT , and we obtain directly from the definition of V k that

V k = max
{
Uk, EQ

[
V k+1

∣∣Fk]} ≥ Uk .
Hence, V dominates U .
Finally, for the Q-supermartingale property, we simply use the definition of V , which
yields

V k ≥ EQ
[
V k+1

∣∣Fk] .
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2. In order to prove the minimality property of V , let V ′ be a Q-supermartingale dominating
U . This includes the two inequalities

V ′k ≥ Uk P -a.s. and V ′k ≥ EQ
[
V ′k+1

∣∣Fk] ,
which together yield V ′k ≥ max

{
Uk, EQ

[
V ′k+1

∣∣Fk]}. Since V ′T ≥ UT = V T , we conclude
that

V ′T−1 ≥ max {UT−1, EQ [V ′T |FT−1]} ≥ max
{
UT−1, EQ

[
V T

∣∣FT−1
]}

= V T−1 .

This implies that V ′T−1 ≥ V T−1. Assuming that V ′k+1 ≥ V k+1 P -a.s., we can repeat
the same argument replacing T − 1 by k + 1 which finally yields the desired inequality
V ′k+1 ≥ V k+1 P -a.s..

(c) 1. By definition of V , we see that the value of V T−1 is greater or equal to the value of a
European put option at time T − 1, i.e.,

V T−1 ≥ EQ
[
V T

∣∣FT−1
]
.

If we inductively assume that

V k+1 ≥ V
P̃ K̃

T

k+1 ,

we conclude that

V k = max
{
Uk, EQ

[
V k+1

∣∣Fk]}
≥ max

{
Uk, EQ

[
V
P̃ K̃

T

k+1

∣∣∣∣Fk]}

= max
{
Uk, V

P̃ K̃
T

k

}

≥ V P̃
K̃
T

k .

Thus, we also have V 0 ≥ V
P̃ K̃

T
0 . We show that for certain strike prices K̃, we cannot

have equality. To that end, we focus on one period. There, the price of a European put
option, respectively of an American put, at time 0 is given by

E0 := EQ

[(
K

1 + r
− S1

1

)+
]
, respectively A0 := V 0 = max

{
E0, (K − S1

0)+} .
For simplicity, we assume S1

0 = 1. Then E0 can be computed as

E0 = q

(
K

1 + r
− 1 + u

1 + r

)+
+ (1− q)

(
K

1 + r
− 1 + d

1 + r

)+
.

Let K > max{u, 1}, so that K
1+r −

1+u
1+r > 0. Then, we get

E0 = K

1 + r
− q 1 + u

1 + r
− (1− q)1 + d

1 + r
= K

1 + r
− 1 .

because EQ
[
S1

1
]

= S1
0 = 1. On the other hand, for the American option price, we have

that
A0 = max

{
E0, (K − S1

0)+} = K − 1 ,
Hence, we see that A0 > E0.
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2. We claim that the process(S1
j −

K̃

(1 + r)j

)+

j=0,...,T

is a Q-submartingale.

To that end, we only have to verify the Q-submartingale property. So let us consider
some k = 0, . . . T − 1 and use the known properties

EQ

(S1
k+1 −

K̃

(1 + r)k+1

)+
∣∣∣∣∣∣Fk

 Jensen︷︸︸︷
≥

(
EQ

[
S1
k+1

∣∣Fk]− K̃

(1 + r)k+1

)+

≥︸︷︷︸
martingale property

(
S1
k −

K̃

(1 + r)k+1

)+

≥︸︷︷︸
(∗)

(
S1
k −

K̃

(1 + r)k

)+

,

where in (∗) we have used the fact that

K 7→ (x−K)+

is decreasing, hence (
S1
k −

K̃

(1 + r)k

)+

≤

(
S1
k −

K̃

(1 + r)k+1

)+

,

because r ≥ 0. By the Q-submartingale property, we have for all j = 0, . . . , T that

Uj =
(
S1
j −

K̃

(1 + r)j

)+

≤ EQ

(S1
j+1 −

K̃

(1 + r)j+1

)+
∣∣∣∣∣∣Fj

 = EQ [Uj+1 |Fj ] .

For j = T − 1 this gives

V T−1 = max{UT−1, EQ [UT |FT−1]} = EQ
[
V T

∣∣FT−1
]
.

The same induction argument finally yields that V k = EQ
[
V k+1

∣∣Fk], i.e., V is a
Q-martingale with terminal value(
S1
T − K̃

(1+r)T

)+
. Thus, we obtain

V 0 = V
CK

T
0 .

Solution 8.3

1 def trinomial_price(maturity, spot, strike, rate, vol, steps_number , payoff_fct
=None,barrier_condition=None, is_american=False, graph_name=None):

2

3 if not barrier_condition:
4 barrier_condition = lambda unused_spot: True
5
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6 {...}

7

8 # The following two list are only needed to display the graph:

9 spot_prices_history = [spot_prices]

10 option_prices_history = [option_prices]

11

12 def next_option_price(spot_price , price_up , price_midlle , price_down):
13 if barrier_condition(spot_price):
14 option_price = (discount_factor ∗(proba_up ∗ price_up +
15 proba_middle ∗ price_midlle +
16 proba_down ∗ price_down))
17 if is_american:
18 exercise = payoff_fct(spot_price , strike)

19 if option_price < exercise: option_price = exercise
20 else:
21 option_price = 0

22 return option_price
23

24 while len(option_prices) > 1:
25 option_prices = [next_option_price(spot_prices[i], ∗option_prices[i−1:i+2])
26 for i in range(1, len(option_prices)−1)]
27 spot_prices = spot_prices[1:−1]
28 spot_prices_history.insert(0, spot_prices)

29 option_prices_history.insert(0, option_prices)

30 ..

31 return option_prices[0]
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