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Solution 9.1

(a) {τ ≤ k} =
⋃k
i=0{|Xi| > λ}. The finite countable union of events ∈ Fk is Fk-measurable. so

{τ ≤ k} ∈ Fk, thus τ is a stopping time. {τ ∧ n ≤ n} = {τ ≤ n} ∈ Fn, so τ ∧ n is a stopping
time.

(b)

E(|Xn|1{X∗n>λ}) = E(|Xn|1{τ≤n})
= E(E(|Xn|1{τ≤n} |Fτ∧n)) tower property
= E(1{τ≤n}E(|Xn| |Fτ∧n)) because {τ ≤ n} ∈ Fn
≥ E(1{τ≤n}|E(Xn |Fτ∧n)|) Jensen with f(x) = |x|
= E(1{τ≤n}|Xτ∧n|)
= E(1{τ≤n}|Xτ |)
≥ E(1{τ≤n}λ) definition of the stopping time τ
= λP (τ ≤ n)
= λP (X∗n > λ)

(c)

E(X∗n ∧ b)2) = E(2
∫ X∗n∧b

0
xdx)

= 2E(
∫ +∞

0
x1{x≤X∗n∧b}dx)

= 2
∫ +∞

0
xE(1{x≤X∗n∧b})dx Fubini positif

= 2
∫ +∞

0
xP (x ≤ X∗n ∧ b)dx

≤ 2
∫ +∞

0
E(|Xn ∧ b|1{x≤X∗n∧b})dx

≤ 2
∫ +∞

0
E(|Xn|1{x≤X∗n∧b})dx

≤ 2E(|Xn|
∫ +∞

0
1{x≤X∗n∧b}dx)

≤ 2E(|Xn|(X∗n ∧ b))

(d) E(X∗n) = E(sup0≤k≤n |Xk|) ≤ sup0≤k≤nE(|Xk|) < +∞, so supnE(X∗n) < +∞.
We notice that sup0≤k≤n(Xk)2 = (sup0≤k≤nXk)2 = (X∗n)2 and so that E(sup0≤k≤n(Xk)2) =
E((X∗n)2), so we have to show that

E((X∗n)2) ≤ 4E(X2
n).
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For all b > 0,

E(X∗n ∧ b)2) ≤ 2E(|Xn|(X∗n ∧ b)) ≤ 2E(|Xn|2)1/2E((X∗n ∧ b)2)1/2

So by dividing by E((X∗n ∧ b)2)1/2 because X∗n ∧ b ≥ b > 0 we obtain

E((X∗n ∧ b)2)1/2 ≤ 2E(|Xn|2)1/2

So
E((X∗n ∧ b)2) ≤ 4E(|Xn|2) .

limb→∞X∗n ∧ b = X∗n and |X∗n ∧ b| ≤ X∗n and supnE(X∗n) < +∞. By the dominated
convergence theorem, limb→∞E(X∗n ∧ b) = E(X∗n) So

E((X∗n)2) ≤ 4E(|Xn|2).

Solution 9.2 The statement of this exercise is true for the continuous time1.But it is no longer
true for the discrete time. A counterexample can be found. This question is no more on the
exam.

(a) We introduce the non-negative random field

ϕ(t,K) = ut(K)−K + St

2in term which we can rewrite

τKmin = inf{t ≥ 0 | ϕ(t,K) = 0 } .

For a fixed t ∈ [0, T ], K → ut(K) is convex and increasing. K → K − ut(K) is also concave
and increasing, so K → ut(K) − K − St is decreasing. In other words K → ϕ(t,K) is
decreasing. Thus for K ≤ K ′, we have

0 ≤ ϕ(τKmin,K
′) ≤ ϕ(τKmin,K) = 0 .

So
ϕ(τKmin,K

′) = 0
hence

τK
′

min ≤ τKmin P a.s.

(b) We have ess infK≥0(τKmin) ≤ τ0
min with τ0

min = inf{t ≥ 0 | U0
t = H0

t }. As

H0
t := (0− St)+

(1 + r)t = 0

and
U0
t = ess supt≤τ≤TE(H0

τ |Ft) = 0 ,

we have that ∀t ≥ 0, H0
t = U0

t , hence τ0
min = 0. We can conclude that essinfK≥0(τKmin) = 0.

(c) From (a) we have that for K ≥ K0, τKmin ≤ τK0
min P -a.s. If we take K0 = 0, then for K ≥ 0,

τKmin ≤ τ0
min P -a.s. Using (b) we have that τ0

min = 0 so τKmin = 0 for K ≥ 0.

In the discrete time we can prove by a counterexample that the optimal stopping time is not
always decreasing. Let’s take a one-step binomial tree, with r = 0.2, u = 0.6, d = −0.6, S1

0 = 180,
S0

0 = 1, then pu = 2
3 and pd = 1

3 . Then τ0
min = 0, τ10

min = 0, τ100
min = 1, τ200

min = 1 and τKmin = 0. so we
can see that the optimal stopping time is not decreasing.

1For more information, see the paper of Nicole Elkaroui and Ioannis Karatzas, The optimal stopping problem for
a general American put option.

2ut(K) is the value of the American put option at time t ∈ [0, T ], ut(K) = esssupt≤τ≤TEt

[
(K−Sτ )+
(1+r)τ−t

]
.
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