Introduction to Mathematical Finance

Exercise sheet 10

Exercise 10.1 Let H be an adapted process in $\mathcal{L}^1(\Omega, \mathcal{F}, Q)$, and define for $\tau \in \mathcal{T}$

$$\mathcal{T}_{\tau} := \left\{ \sigma \in \mathcal{T} \mid \sigma \geq \tau \right\}.$$

Show that the Snell envelope U^Q of H satisfies Q-a.s.

$$U_{\tau}^{Q} = \operatorname{ess\,sup}_{\sigma \in \mathcal{T}_{\tau}} E_{Q}[H_{\sigma} \mid \mathcal{F}_{\tau}],$$

and that the essential supremum is attained for

$$\sigma_{\min}^{(\tau)} := \min\{t \ge \tau \mid H_t = U_t^Q\}.$$

Exercise 10.2

(a) Show that for $Q_1 \approx Q_2$, their pasting in $\sigma \in \mathcal{T}$ is equivalent to Q_1 and satisfies

$$\frac{d\tilde{Q}}{dQ_1} = \frac{Z_T}{Z_\sigma},$$

where Z is the density process of Q_2 with respect to Q_1 .

(b) Try to find a independent proof of the statement : For $Q_1 \approx Q_2$, let \tilde{Q} be their pasting in $\sigma \in \mathcal{T}$. Then for all stopping times τ and \mathcal{F}_T mesureable $Y \ge 0$,

$$E_{\tilde{Q}}[Y \mid \mathcal{F}_{\tau}] = E_{Q_1}[E_{Q_2}[Y \mid \mathcal{F}_{\sigma \vee \tau}] | \mathcal{F}_{\tau}].$$

Exercise 10.3 For a twice differential utility function $U : [0, \infty) \to \mathbb{R}$, the so-called *relative risk* aversion is given by

$$-\frac{xU''(x)}{U'(x)}.$$

- (a) Characterize all utility functions $U = U^{\gamma}$ with constant relative risk aversion equal to γ . Normalize the functions so that $U^{\gamma}(1) = 0$ and $(U^{\gamma})'(1) = 1$.
- (b) Verify that $\lim_{\gamma \to 1} U^{\gamma}(x) = U^{1}(x)$ for all x.
- (c) For a differentiable function $f:[0,\infty)\to[0,\infty)$, the *elasticity* of f is defined as

$$\frac{xf'(x)}{f(x)}.$$

Show that with $U^{\gamma}(0) = 0$ instead of the normalization above, utility functions with constant relative risk aversion $\gamma \neq 1$ also have constant elasticity.