Introduction to Mathematical Finance
 Solution sheet 10

Solution 10.1 Fix γ and write $U:=U^{\gamma}$.
(a) Since the ODE

$$
\frac{U^{\prime \prime}(x)}{U^{\prime}(x)}=-\frac{\gamma}{x}
$$

is separable, we find U^{\prime} from

$$
\ln U^{\prime}=\int \frac{1}{U^{\prime}} d U^{\prime}=-\int \frac{\gamma}{x} d x=-\gamma \ln x+C
$$

From $U^{\prime}(1)=1$, we obtain $C=0$. Hence,

$$
U^{\prime}(x)=x^{-\gamma}
$$

Integrate again to get

$$
U= \begin{cases}\frac{x^{1-\gamma}}{1-\gamma}+D, & \text { if } \gamma \neq 1 \\ \ln x+D, & \text { if } \gamma=1\end{cases}
$$

The condition $U(1)=0$ gives $D=-1 /(1-\gamma)$ and $D=0$ for the two cases, respectively. The utility function $U=U^{\gamma}$ is therefore given by

$$
U^{\gamma}(x)= \begin{cases}\frac{x^{1-\gamma}-1}{1-\gamma}, & \text { if } \gamma \neq 1 \\ \ln x, & \text { if } \gamma=1\end{cases}
$$

If we also want U to be concave, we have to impose $\gamma \geq 0$.
(b) We employ L'Hopital's rule:

$$
\lim _{\gamma \rightarrow 1} \frac{x^{1-\gamma}-1}{1-\gamma}=\lim _{\gamma \rightarrow 1} \frac{\frac{\mathrm{~d}}{\mathrm{~d} \gamma}\left(x^{1-\gamma}-1\right)}{\frac{\mathrm{d}}{\mathrm{~d} \gamma}(1-\gamma)}=\lim _{\gamma \rightarrow 1} \frac{-x^{1-\gamma} \ln x}{-1}=\ln x
$$

which is what we wanted to show.
(c) If we normalize the utility functions found in (a) such that $D=0$, we obtain

$$
U^{\gamma}(x)=\frac{x^{1-\gamma}}{1-\gamma}
$$

Plugging this into the expression for elasticity gives

$$
\frac{x^{-\gamma}}{\frac{x^{1-\gamma}}{1-\gamma}} x=1-\gamma
$$

Hence, U^{γ} has constant elasticity $1-\gamma$.
Remark: This type of utility function is called isoelastic. Since an additive constant only shifts the 'utility' by a fixed amount and does not change the behavior under, for example, maximization, this name is also used for the utility functions found in (a).

