Introduction to mathematical finance

Exercise sheet 11

Exercise 11.1 For probability measures $Q \ll P$ the *(relative) entropy* of Q with respect to P is defined as

$$H(Q|P) = E_P \left[\frac{\mathrm{d}Q}{\mathrm{d}P} \ln \frac{\mathrm{d}Q}{\mathrm{d}P} \right] = E_Q \left[\ln \frac{\mathrm{d}Q}{\mathrm{d}P} \right].$$

In this problem, we consider the trinomial market with m = r = 0, u = -d, $\pi^1 = 1$ and $p^i = P[S_1^1 = 1 + i]$.

- 1. Find the measure Q^* minimizing the relative entropy H(Q|P) over all equivalent martingale measures Q.
- 2. Find the strategy ξ^* maximizing expected utility of final wealth, with initial wealth 0 and exponential utility with parameter α , i.e.,

$$U_w(x) = 1 - e^{-\alpha x}$$
 and $U_c(x) = 0.$

Verify that

$$\frac{\mathrm{d}Q^*}{\mathrm{d}P} = \frac{e^{\eta^* \cdot \Delta X_1}}{E[e^{\eta^* \cdot \Delta X_1}]},$$

with $\eta^* = -\alpha \xi^*$.

Exercise 11.2

Consider the asset given by the following tree:

where the fractions denote probabilities. Let $S_k^0 = (1+r)^k$ and

$$-1 < r \in (d, u) \cap (d_u, u_u) \cap (d_d, u_d) \neq \emptyset,$$

i.e., the market is arbitrage-free.

Strategies here can be identified with vectors in \mathbb{R}^3 via $\xi = (\xi_1, \xi_2^u, \xi_2^d)$. Find the optimizer ξ^* to the problem of maximizing (exponential) utility of final wealth:

$$\max_{\xi \in \mathbb{R}^3} E\left[1 - \exp\left(-v_0 - (\xi \bullet X)_2\right)\right]$$

Updated: May 8, 2017

1 / 2

$$\sup_{\xi \in \mathcal{A}(x)} E[U(x + \xi \cdot \Delta X_1)] < \infty,$$

with

$$\mathcal{A}(x) = \{\xi \in \mathbb{R}^d | x + \xi \cdot \Delta X_1 \ge 0 \text{ } P\text{-a.s.}\}.$$

Furthermore, assume that the supremum is attained in an interior point ξ^* of $\mathcal{A}(x)$.

1. Show that

$$U'(x + \xi^* \cdot \Delta X_1) |\Delta X_1| \in L^1(P)$$

and the first order condition

$$E[U'(X + \xi^* \cdot \Delta X_1)\Delta X_1] = 0.$$

Hint: You may use that

$$y \mapsto \frac{U(y) - U(z)}{y - z}, \quad y \in (0, \infty) \setminus \{z\}$$

is nonincreasing. By optimality, ξ^* is better than $\xi^* + \varepsilon \eta$ for any $\eta \neq 0$ and $0 < \varepsilon \ll 1$; so take the difference of corresponding utilities, divide by ε and look at $\varepsilon \searrow 0$. Exploit the hint to see that this quantity is monotonic in ε .

2. Show that Q given by

$$\frac{\mathrm{d}\bar{Q}}{\mathrm{d}P} = \frac{U'(x+\xi^*\cdot\Delta X_1)}{E[U'(x+\xi^*\cdot\Delta X_1)]}$$

is an equivalent martingale measure.