Introduction to mathematical finance

Solution sheet 11

Solution 11.1

1. The parametrization of \mathbb{P} is

$$
\left\{\left.\left(\frac{1-\lambda}{2}, \lambda, \frac{1-\lambda}{2}\right) \right\rvert\, \lambda \in(0,1)\right\} .
$$

Using this, we can write down the relative entropy given the parameter λ as

$$
\begin{aligned}
H\left(Q^{\lambda} \mid P\right) & =\frac{1-\lambda}{2}\left(\ln \frac{1-\lambda}{2 p^{u}}+\ln \frac{1-\lambda}{2 p^{d}}\right)+\lambda \ln \frac{\lambda}{p^{m}} \\
& =(1-\lambda)\left(\ln (1-\lambda)-\ln \left(2 \sqrt{p^{u} p^{d}}\right)\right)+\lambda \ln \lambda-\lambda \ln p^{m}
\end{aligned}
$$

Minimizing this expression over $Q^{\lambda} \in \mathbb{P}$ yields the necessary condition

$$
-\left(\ln \left(1-\lambda^{*}\right)-\ln \left(2 \sqrt{p^{u} p^{d}}\right)\right)-1+\ln \lambda^{*}+1-\ln p^{m}=0
$$

This condition is also sufficient since the second derivative is positive. Solving for λ^{*}, one obtains

$$
\frac{\lambda^{*}}{1-\lambda^{*}}=p^{m} / 2 \sqrt{p^{u} p^{d}}
$$

and from there

$$
\lambda^{*}=\frac{p^{m}}{2 \sqrt{p^{u} p^{d}}} \frac{1}{1+\frac{p^{m}}{2 \sqrt{p^{u} p^{d}}}}=\frac{p^{m}}{p^{m}+2 \sqrt{p^{u} p^{d}}}
$$

Thus,

$$
Q^{*}=Q^{\lambda^{*}}=\frac{\left(\sqrt{p^{u} p^{d}}, p^{m} \sqrt{p^{u} p^{d}}\right)}{p^{m}+2 \sqrt{p^{u} p^{d}}}
$$

2. First note that maximizing the expected utility is equivalent to minimizing

$$
E\left[e^{-\alpha \xi \cdot \Delta X_{1}}\right]
$$

over ξ, or

$$
E\left[e^{\eta \cdot \Delta X_{1}}\right]
$$

over η, i.e., minimizing the moment generating function of ΔX_{1}.
Write Z for the moment generating function of ΔX_{1}. We begin by finding the minimizer η^{*}. The necessary condition

$$
\begin{aligned}
Z^{\prime}\left(\eta^{*}\right) & =\left.\frac{\mathrm{d}}{\mathrm{~d} \eta}\left(p^{u} e^{\eta u X_{0}^{1}}+p^{m}+p^{d} e^{\eta d X_{0}^{1}}\right)\right|_{\eta=\eta^{*}} \\
& =p^{u} u X_{0}^{1} e^{\eta^{*} u X_{0}^{1}}+p^{d} d X_{0}^{1} e^{\eta^{*} d X_{0}^{1}}=0
\end{aligned}
$$

simplifies to

$$
\eta^{*}=\frac{\ln \left(-\frac{p^{d} d}{p^{u} u}\right)}{(u-d) X_{0}^{1}}=\frac{\ln \left(\frac{p^{d}}{p^{u}}\right)}{2 u X_{0}^{1}} .
$$

The second derivative of Z is easily verified to be positive, and therefore η^{*} is a minimizer. The corresponding strategy is then $\xi^{*}=-\eta^{*} / \alpha$.
This gives

$$
Z\left(\eta^{*}\right)=p^{m}+2 \sqrt{p^{d} p^{u}}
$$

and in turn also the measure

$$
\frac{\left(\sqrt{p^{u} p^{d}}, p^{m}, \sqrt{p^{u} p^{d}}\right)}{Z\left(\eta^{*}\right)}
$$

This is precisely what we found in (a).
Solution 11.2 The objective function is given by

$$
E\left[1-e^{-\left(v_{0}+(\bar{\xi} \bullet X)_{2}\right.}\right]=1-\frac{1}{4} \sum_{\substack{i \in\{u, d\} \\ j \in\left\{u_{i}, d_{i}\right\}}} \underbrace{\exp \left(-v_{0}-\bar{\xi}_{1} \frac{i-r}{1+r} S_{0}^{1}-\bar{\xi}_{2}^{i} \frac{(j-r)(1+i)}{(1+r)^{2}} S_{0}^{1}\right)}_{=: D(i, j)} .
$$

Begin by finding $\bar{\xi}_{2}^{i}$ by differentiating this expression with respect to $\bar{\xi}_{2}^{i}$. Setting the derivative to zero yields

$$
\begin{equation*}
\frac{\left(u_{i}-r\right)(1+i)}{(1+r)^{2}} S_{0}^{1} D\left(i, u_{i}\right)+\frac{\left(d_{i}-r\right)(1+i)}{(1+r)^{2}} S_{0}^{1} D\left(i, d_{i}\right)=0 . \tag{1}
\end{equation*}
$$

Combining the two factors $D(i, j)$, taking logarithms and finally solving for $\bar{\xi}_{2}^{i}$ yields

$$
\bar{\xi}_{2}^{i}=-\frac{(1+r)^{2}}{\left(u_{i}-d_{i}\right)(1+i) S_{0}^{1}} \ln \frac{r-d_{i}}{u_{i}-r}
$$

The corresponding condition for $\bar{\xi}_{1}$ is given by

$$
\sum_{\substack{i \in\{u, d\} \\ j \in\left\{u_{i}, d_{i}\right\}}} \frac{i-r}{1+r} S_{0}^{1} D(i, j)=0 .
$$

Eliminate $D\left(i, d_{i}\right)$ with (1) to obtain

$$
\sum_{i \in\{u, d\}} \frac{i-r}{1+r}\left(1-\frac{u_{i}-r}{d_{i}-r}\right) D\left(i, u_{i}\right)=\sum_{i \in\{u, d\}} \frac{i-r}{1+r} \frac{u_{i}-d_{i}}{r-d_{i}} D\left(i, u_{i}\right)=0
$$

This can be rewritten as

$$
\begin{aligned}
& \exp \left(-\bar{\xi}_{1} \frac{u-d}{1+r} S_{0}^{1}\right)=\frac{r-d}{u-r} \frac{u_{d}-d_{d}}{r-d_{d}} \frac{r-d_{u}}{u_{u}-d_{u}} \\
& \quad \exp \left(-\bar{\xi}_{2}^{d} \frac{\left(u_{d}-r\right)(1+d)}{(1+r)^{2}} S_{0}^{1}\right) \exp \left(\bar{\xi}_{2}^{u} \frac{\left(u_{u}-r\right)(1+u)}{(1+r)^{2}} S_{0}^{1}\right) .
\end{aligned}
$$

Finally, the values for $\bar{\xi}_{2}^{u}$ and $\bar{\xi}_{2}^{d}$ can be plugged in to solve for $\bar{\xi}_{1}$:

$$
\begin{aligned}
\bar{\xi}_{1} \frac{u-d}{1+r} S_{0}^{1}=-\ln \left(\frac{r-d}{u-r} \frac{u_{d}-d_{d}}{r-d_{d}} \frac{r-d_{u}}{u_{u}-d_{u}}\right) & \\
& -\left(\frac{u_{d}-r}{u_{d}-d_{d}} \ln \frac{r-d_{d}}{u_{d}-r}\right)+\left(\frac{u_{u}-r}{u_{u}-d_{u}} \ln \frac{r-d_{u}}{u_{u}-r}\right) .
\end{aligned}
$$

The optimizer is thus given by $\xi^{*}=\left(\bar{\xi}_{1}, \bar{\xi}_{2}^{u}, \bar{\xi}_{2}^{d}\right)$.

Solution 11.3

1. Let η be any non-zero vector. Then, by the assumption that ξ^{*} is an interior point, $\xi^{*}+\varepsilon \eta \in$ $\mathcal{A}(x)$ for all $0<\varepsilon \ll 1$. Define

$$
\Delta_{\varepsilon}^{\eta}=\frac{U\left(x+\left(\xi^{*}+\varepsilon \eta\right) \cdot \Delta X_{1}\right)-U\left(x+\xi^{*} \cdot \Delta X_{1}\right)}{\varepsilon}
$$

for small ε, as above. On $\left\{\eta \cdot \Delta X_{1}=0\right\}, \Delta_{\varepsilon}^{\eta} \equiv 0$, and on $\left\{\eta \cdot \Delta X_{1} \neq 0\right\}$,

$$
\Delta_{\varepsilon}^{\eta}=\eta \cdot \Delta X_{1} \frac{U\left(x+\left(\xi^{*}+\varepsilon \eta\right) \cdot \Delta X_{1}\right)-U\left(x+\xi^{*} \cdot \Delta X_{1}\right)}{\varepsilon \eta \cdot \Delta X_{1}}
$$

so $\Delta_{\varepsilon}^{\eta}$ is monotonically ${ }^{1}$ increasing to $\eta \cdot \Delta X_{1} U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right)$ as $\varepsilon \searrow 0$. Note that by the hint, $U^{\prime}(0)$ is well-defined.

From (??) we know that $U\left(x+\xi \cdot \Delta X_{1}\right) \in L^{1}$ for all ξ, and so $\Delta_{\varepsilon}^{\eta} \in L^{1}$. Next note that $\varepsilon \mapsto \Delta_{\varepsilon}^{\eta}$ is decreasing; so for $\varepsilon \searrow 0, \Delta_{\varepsilon}^{\eta} \nearrow$ and we can use monotone convergence. Therefore, by monotone convergence and then optimality of ξ^{*},

$$
-\infty<E\left[\Delta_{\varepsilon}^{\eta}\right] \leq E\left[U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right) \eta \cdot \Delta X_{1}\right]=\lim _{\varepsilon \searrow 0} E\left[\Delta_{\varepsilon}^{\eta}\right] \leq 0
$$

Therefore, $U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right) \eta \cdot \Delta X_{1} \in L^{1}(P)$. Finally, since η can be chosen arbitrarily, $U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right) \Delta X_{1} \in L^{1}(P)$ and

$$
\eta \cdot E\left[U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right) \Delta X_{1}\right] \leq 0
$$

with $\eta=E\left[U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right) \Delta X_{1}\right]$ implies

$$
E\left[U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right) \Delta X_{1}\right]=0
$$

2. By part (a), \bar{Q} is an EMM if we can show that it is well-defined, i.e., $U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right) \in L^{1}(P)$. Observe that

$$
\begin{aligned}
U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right)=U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right) 1_{\left\{\xi^{*} \cdot \Delta X_{1} \leq-x / 2\right\}} & \\
& +U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right) 1_{\left\{\xi^{*} \cdot \Delta X_{1} \geq-x / 2\right\}}
\end{aligned}
$$

The second term is bounded by $U^{\prime}(x / 2)$ since U^{\prime} is non-increasing. Again using part (a),

$$
\begin{aligned}
& E\left[U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right) 1_{\left\{\xi^{*} \cdot \Delta X_{1} \leq-x / 2\right\}}\right] \\
& \leq E\left[\frac{-\xi^{*} \cdot \Delta X_{1}}{x / 2} U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right) 1_{\left\{\xi^{*} \cdot \Delta X_{1} \leq-x / 2\right\}}\right] \\
& \quad \leq \frac{2}{x} E\left[\left[\xi^{*} \cdot \Delta X_{1} \mid U^{\prime}\left(x+\xi^{*} \cdot \Delta X_{1}\right)\right]<\infty\right.
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ This is easily seen by splitting into two cases depending on the sign of $\eta \cdot \Delta X_{1}$.

