ETH Ziirich
D-Math, Spring 2017 Coordinator
Prof. Josef Teichmann Calypso Herrera

Introduction to mathematical finance

Solution sheet 11

Solution 11.1

1. The parametrization of PP is

{(1—/\7>\’1—)\>
2 2

Using this, we can write down the relative entropy given the parameter \ as

1-A 1—A 1-—A A
H(QMP) = (ln +In )+)\ln
@1P) =257 (o 2

AG(O,l)}.

(1-)) (ln(l A -In (2 p“pd)) £ AInA— Anp™.

Minimizing this expression over @Q* € P yields the necessary condition
— (ln(l — %) —1In(2 pupd)) —14+InX*+1—-Inp™ =0.

This condition is also sufficient since the second derivative is positive. Solving for A*, one

obtains v
Y =p"/2V/pUp?,
and from there - -
o P 1 _ p
2 /pupd 1+ ﬁm pm 42 /pupd

Thus,
(v pipd, p™/pip?)

P+ 24/pip?

2. First note that maximizing the expected utility is equivalent to minimizing

Q =Q" =

E[S*QE'AXl]

over &, or
E[e”'AXl]
over 7, i.e., minimizing the moment generating function of AXj.

Write Z for the moment generating function of AX;. We begin by finding the minimizer n*.
The necessary condition

Z0") = g (prem s 4 pm 4 plen)

*

n="
* 1 * 1
= p“uXée" uXo —&-pddX&e” aXo —
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simplifies to

n(5) ()
T w-d)Xx T 2uXx}

The second derivative of Z is easily verified to be positive, and therefore n* is a minimizer.
The corresponding strategy is then £* = —n* /.

n

This gives
Z(n*) =p™ + 2/pipt,
and in turn also the measure
(Vpup,p™, /p"p?)
Z(n) '

This is precisely what we found in (a).

Solution 11.2 The objective function is given by

- _ 1 P 5 —r)1+9)
_o—(vo+(EeX)ay _ 1 _ 1 —vg — o — & g
B[l —emtomt ] =1 E{z:d} exp< R T (e ey

Jj€{us,di} =:D(4,5)

Begin by finding 55 by differentiating this expression with respect to éé Setting the derivative to
zero yields
(u; —7r)(141)
(14+7r)2

(d; — 1)1+ 1)
(1+7)?

Combining the two factors D(i, j), taking logarithms and finally solving for & yields

SED(i,u;) + Sy D(i,d;) = 0. (1)

(1+7)? r—d;

& T (i —d)(A+0)S] T

The corresponding condition for &; is given by

L—T . .
E D =0.
) 1_’_7,50 (l)j) 0
i€{u,d}

je{ui,di}

Eliminate D(i,d;) with (1) to obtain

=7 U; — T . t—ru—d; .
1— D(i,u;) = D(i,u;) = 0.
Z 1—|—7"< di—r> (3, ) Z 14+rr—d; (3, us)

i1€{u,d} i€{u,d}

This can be rewritten as

u—d 1\  r—dug—dqg v —dy
exp(_gll-i-rSO) T u—r r—dg uy—d,

Finally, the values for ég and ég can be plugged in to solve for &;:

~u—d r—dug—dg r—d,
Sy =-1
Ell—i—r 0 n<u—r r—dg uu—du)

B ud—rlnr—dd n uu—rlnT—du .
Ug—dg ug—r Uy — Ay Uy — T
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The optimizer is thus given by £* = (&, £y, £9).

Solution 11.3

1. Let n be any non-zero vector. Then, by the assumption that £* is an interior point, £* +en €
A(z) for all 0 < ¢ <« 1. Define

an Ul (€ ten)  AX)) — Ul + € - AX))
e c )

for small €, as above. On {n- AX; =0}, A? =0, and on {n- AX; # 0},

Ulx+ (& +en) - AXy) —U(z + £ - AX7)
en - AXy ’

so A" is monotonically’ increasing to - AX U’ (z + £* - AX7) as € \, 0. Note that by the
hint, U’(0) is well-defined.

From (??) we know that U(x + & - AX;) € L for all £, and so A7 € L'. Next note that
e — A7 is decreasing; so for € \ 0, A7 * and we can use monotone convergence. Therefore,
by monotone convergence and then optimality of £*,

—o0 < B[AN < BU'(a + £ AXy)n- AXy] = lim B[AT] <0

Therefore, U'(x + £* - AX;)n - AX; € L'(P). Finally, since n can be chosen arbitrarily,
U'(z + & - AXq)AX; € LY(P) and

with n = E[U'(z + £* - AX;)AX;] implies

2. By part (a), Q is an EMM if we can show that it is well-defined, i.e., U’ (z+£*-AX;) € LY(P).
Observe that

U/(.T + g* . AXl) = U/((E + 5* . AX1)1{§*~AX1§—;8/2}
+ U/(.Z‘ + E* . AXl)l{E*.AXIE,QJ/Q}.

The second term is bounded by U’(z/2) since U’ is non-increasing. Again using part (a),

EU' (x4 & - AX1)Llerax, <—a/2}]

<FkE
- z/2

U/(I + E* * AXl)]‘{f*'AXlS—E/Q}

2
< ZE[lg AX|U'(+ €7 AX)] < oo

IThis is easily seen by splitting into two cases depending on the sign of - AX7.
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