Introduction to mathematical finance

 Exercise sheet 12

 Exercise sheet 12}

Exercise 12.1 Consider the arbitrage-free market in T periods with a riskless bond with zero interest rate. Assume that $H \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$ is an attainable claim and fix one EMM Q. Let U be an exponential utility function, $\mathcal{A}=\Theta$ be the set of predictable processes, and consider the two functions

$$
u(x)=\max _{\xi \in \mathcal{A}} E\left[U\left(x+(\xi \bullet X)_{T}\right)\right]
$$

and

$$
u_{H}(x)=\max _{\xi \in \mathcal{A}} E\left[U\left(x+(\xi \bullet X)_{T}-H\right)\right]
$$

Given a wealth level x, the utility indifference price $p_{H}(x)$ of H is defined as the solution to

$$
u(x)=u_{H}\left(x+p_{H}(x)\right) .
$$

1. Show that $E_{Q}[H]$ is the unique solution to the above equation.
2. Can the assumptions on the utility function be generalized?

Exercise 12.2

Recall the market structure from Exercise 11.2:

where the fractions denote probabilities. Let $S_{k}^{0}=(1+r)^{k}$ and

$$
-1<r \in(d, u) \cap\left(d_{u}, u_{u}\right) \cap\left(d_{d}, u_{d}\right) \neq \emptyset .
$$

Strategies are identified with vectors in \mathbb{R}^{3} via $\xi=\left(\xi_{1}, \xi_{2}^{u}, \xi_{2}^{d}\right)$. Find the optimizer ξ^{*} to the problem

$$
\max _{\xi \in \mathbb{R}^{3}} E\left[1-\exp \left(-v_{0}-(\xi \bullet X)_{2}\right)\right] .
$$

using dynamic programming ${ }^{1}$.

[^0]Exercise 12.3 Consider an individual with endowment (income) (e_{0}, \ldots, e_{T}), $e_{0}>0$ and who only invests in the riskless bank account $S_{k}^{0}=(1+r)^{k}$. Denote by W_{k} the wealth held in the bank account when leaving time point $k-1$ and $W_{0}=v_{0}$. Then, for any consumption strategy,

$$
W_{k+1}=\left(W_{k}+e_{k}-c_{k}\right)(1+r)
$$

With $\beta \in(0,1]$, the individual aims to maximize

$$
E\left[\sum_{k=0}^{T} \beta^{k} U\left(c_{k}\right)\right]
$$

subject to

$$
v_{0}+\sum_{k=0}^{T} e^{-r k}\left(e_{k}-c_{k}\right)=0
$$

over all (possibly negative) consumption plans, and where $\tilde{\beta}=1 / \beta-1$ is a so-called impatience parameter. For simplicity, we will consider $\tilde{\beta}=r$. Assume that U is described by a quadratic parabola, so that U^{\prime} is an affine function. ${ }^{2}$

Find the optimal consumption strategy.

[^1]
[^0]: ${ }^{1}$ dynamic programming is what we call the backward recursion.

[^1]: ${ }^{2}$ We make this assumption for the sake of the exercise, even though a parabola is not increasing on a sufficiently large domain.

