Introduction to mathematical finance

Solution sheet 12

Solution 12.1

1. Let ξ_{H} be a replicating strategy, i.e., $E_{Q}[H]+G_{T}\left(\xi_{H}\right)=H P$-a.s. Then, for any $\xi \in \mathcal{A}$,

$$
(\xi \bullet X)_{T}-H=(\xi \bullet X)_{T}-\left(\xi_{H} \bullet X\right)_{T}-E_{Q}[H]=\left(\left(\xi-\xi_{H}\right) \bullet X\right)_{T}-E_{Q}[H] .
$$

Hence,

$$
\begin{aligned}
u_{H}\left(x+E_{Q}[H]\right) & =\max _{\xi \in \mathcal{A}} E\left[U\left(x+E_{Q}[H]+(\xi \bullet X)_{T}-H\right)\right] \\
& =\max _{\xi \in \mathcal{A}} E\left[U\left(x+\left(\left(\xi-\xi_{H}\right) \bullet X\right)_{T}\right)\right] \\
& =\max _{\xi \in \mathcal{A}-\xi_{H}} E\left[U\left(x+(\xi \bullet X)_{T}\right)\right]=u(x),
\end{aligned}
$$

since $\mathcal{A}=\mathcal{A}-\xi_{H}$. Thus, $p_{H}(x)=E_{Q}[H]$ is a solution. Since U is strictly increasing, with any other choice for $p_{H}(x)$, we would obtain a strict inequality. Therefore, our solution is unique.

Remark: This type of problem is mostly of interest for non-attainable claims.
2. We have only used two properties of U. All expressions must be well defined, which means U must be defined on all of \mathbb{R}. For uniqueness we also need U to be strictly increasing.

Solution 12.2 We write $X=X^{1}$. At the final time, $\mathcal{O}_{2}\left(v_{2}\right)=1-\exp \left(-v_{2}\right)$. By the dynamic programming principle,

$$
\mathcal{O}_{1}\left(v_{1}\right)=\operatorname{ess} \sup _{\bar{\xi}_{2}} E\left[1-\exp \left(-v_{1}-\bar{\xi}_{2} \Delta X_{2}\right) \mid \mathcal{F}_{1}\right]
$$

Note that this quantity takes two different values. Use $i \in\{u, d\}$ to distighuish between the two possible outcomes in the first step. The first order condition is then

$$
\begin{aligned}
& \frac{u_{i}-r}{1+r} X_{1}^{i} \exp \left(-v_{1}^{i}-\bar{\xi}_{2}^{i} \frac{u_{i}-r}{1+r} X_{1}^{i}\right) \\
& \\
& \quad+\frac{d_{i}-r}{1+r} X_{1}^{i} \exp \left(-v_{1}^{i}-\bar{\xi}_{2}^{i} \frac{d_{i}-r}{1+r} X_{1}^{i}\right)=0
\end{aligned}
$$

Solving for $\bar{\xi}_{2}^{i}$ gives

$$
\bar{\xi}_{2}^{i}=-\frac{1+r}{\left(u_{i}-d_{i}\right) X_{1}^{i}} \ln \frac{r-d_{i}}{u_{i}-r}=-\frac{(1+r)^{2}}{\left(u_{i}-d_{i}\right)(1+i) X_{0}} \ln \frac{r-d_{i}}{u_{i}-r}
$$

which, as expected, is the same result as found in Exercise 11.2. Thus,

$$
\begin{aligned}
\mathcal{O}_{1}\left(v_{1}\right) & =E\left[1-\exp \left(-v_{1}-\bar{\xi}_{2} \Delta X_{2}\right) \mid \mathcal{F}_{1}\right] \\
& =1-e^{-v_{1}} \underbrace{E\left[\exp \left(-\bar{\xi}_{2} \Delta X_{2}\right) \mid \mathcal{F}_{1}\right]}_{=: N_{1}} .
\end{aligned}
$$

Proceed with finding \mathcal{O}_{0} :

$$
\begin{aligned}
\mathcal{O}_{0}\left(v_{0}\right) & =\operatorname{ess} \sup _{\bar{\xi}_{1}} E\left[\mathcal{O}_{1}\left(v_{0}+\bar{\xi}_{1} \Delta X_{1}\right)\right] \\
& =\operatorname{esssup}_{\bar{\xi}_{1}} 1-E\left[\exp \left(-v_{0}-\bar{\xi}_{1} \Delta X_{1}\right) N_{1}\right] \\
& =\operatorname{ess} \sup _{\bar{\xi}_{1}} 1-\frac{e^{-v_{0}}}{2} \sum_{i \in\{u, d\}} e^{-\bar{\xi}_{1} \Delta X_{1}^{i}} N_{1}^{i}
\end{aligned}
$$

Differentiating with respect to $\bar{\xi}_{1}$ and setting the derivative to zero, yields

$$
e^{-\bar{\xi}_{1} \Delta X_{1}^{u}} N_{1}^{u}+e^{-\bar{\xi}_{1} \Delta X_{1}^{d}} N_{1}^{d}=0 .
$$

Solve for $\bar{\xi}_{1}$ to obtain

$$
\bar{\xi}_{1}=-\frac{1+r}{(u-d) S_{0}^{1}} \ln \left(-\frac{N_{1}^{d}}{N_{1}^{u}}\right)
$$

With the elimination using (1) from Solution 11.2 , we can verify that this is indeed the same solution as we found using direct methods.

Solution 12.3 Suppose c^{*} is the maximizer. Then, for any $k \leq T-1, t \leq T-k, A \in \mathcal{F}_{k}$ and

$$
c^{\varepsilon}=\left(c_{0}^{*}, \ldots, c_{k-1}^{*}, c_{k}^{*}-\varepsilon 1_{A}, c_{k+1}^{*}, \ldots, c_{k+t-1}^{*}, c_{k+t}^{*}+(1+r)^{t} \varepsilon 1_{A}, c_{k+t+1}^{*}, \ldots, c_{T}^{*}\right)
$$

we have that

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} E\left[\sum_{k=0}^{T} \beta^{k} U\left(c_{k}^{\varepsilon}\right)\right]\right|_{\varepsilon=0}=\beta^{k} E\left[-U^{\prime}\left(c_{k}^{*}\right) 1_{A}+\beta^{t}(1+r)^{t} U^{\prime}\left(c_{k+t}^{*}\right) 1_{A}\right]=0
$$

Since this holds for any $A \in \mathcal{F}_{k}$ and $\tilde{\beta}=r$, we conclude that

$$
U^{\prime}\left(c_{k}^{*}\right)=E\left[U^{\prime}\left(c_{k+t}^{*}\right) \mid \mathcal{F}_{k}\right]
$$

and by the parabolic property of U, that

$$
c_{k}^{*}=E\left[c_{k+t}^{*} \mid \mathcal{F}_{k}\right] .
$$

We derive the consumption plan by first observing that

$$
W_{k}=\frac{W_{k+1}}{1+r}-e_{k}+c_{k}^{*}, \quad k \leq T
$$

Using this result repeatedly yields

$$
W_{k}=\frac{W_{T+1}}{(1+r)^{T+1-k}}-\sum_{t=0}^{T-k} \frac{1}{(1+r)^{t}} e_{k+t}+\sum_{t=0}^{T-k} \frac{1}{(1+r)^{t}} c_{k+t}^{*} .
$$

Using $k=0$ and (??) gives $W_{T+1}=0$. Taking conditional expectation,

$$
W_{k}=-\sum_{t=0}^{T-k} \frac{1}{(1+r)^{t}} E\left[e_{k+t} \mid \mathcal{F}_{k}\right]+\sum_{t=0}^{T-k} \frac{1}{(1+r)^{t}} E\left[c_{k+t}^{*} \mid \mathcal{F}_{k}\right]
$$

Using the earlier result, we obtain

$$
\begin{aligned}
W_{k} & =-\sum_{t=0}^{T-k} \frac{1}{(1+r)^{t}} E\left[e_{k+t} \mid \mathcal{F}_{k}\right]+\sum_{t=0}^{T-k} \frac{1}{(1+r)^{t}} c_{k}^{*} \\
& =-\sum_{t=0}^{T-k} \frac{1}{(1+r)^{t}} E\left[e_{k+t} \mid \mathcal{F}_{k}\right]+c_{k}^{*} \frac{1-(1+r)^{-(T+1-k)}}{1-(1+r)^{-1}}
\end{aligned}
$$

which, after solving for c_{k}^{*}, gives

$$
c_{k}^{*}=\frac{r}{1+r-(1+r)^{-(T-k)}}\left(W_{k}+\sum_{t=0}^{T-k} \frac{1}{(1+r)^{t}} E\left[e_{k+t} \mid \mathcal{F}_{k}\right]\right)
$$

Note: The solution is independent of the parameters of the parabola describing U.
Remark: This is a model for the permanent income hypothesis in macroeconomics, a theory which states that an individual's consumption is not only based on the current income, but instead the expected future income - the permanent income.

