Introduction to mathematical finance

Exercise sheet 13

Exercise 13.1 Let $U : \mathbb{R} \to \mathbb{R}$ be a strictly increasing utility function and consider a general arbitrage-free market in T periods, with \mathcal{F}_0 trivial. Recall that $\mathcal{C} = \{(\xi \bullet X)_T\} - L^0_+$.

1. Show that an optimizer to

$$u(x) = \sup_{\xi \in \Xi} E\left[U(x + (\xi \bullet X)_T\right]$$

can be obtained from an optimizer of

$$u_{\mathcal{C}}(x) = \sup_{f \in \mathcal{C}} E\left[U(x+f)\right],$$

and vice versa.

2. Denote by \mathbb{P}_a the set of absolutely continuous martingale measures. Show that if Ω is finite and $f \in L^0$, then

$$f \in \mathcal{C} \iff E_Q[f] \le 0, \quad \forall Q \in \mathbb{P}_a.$$

Exercise 13.2 Prove that a monetary risk measure is quasi-convex if and only if it is convex.

Exercise 13.3 Show that if ρ is convex and normalized, then

$$\begin{array}{rcl} \rho(\lambda X) & \leq & \lambda \rho(X) & \text{for} & 0 \leq \lambda \leq 1 \,, \\ \rho(\lambda X) & \geq & \lambda \rho(X) & \text{for} & \lambda \geq 1 \,. \end{array}$$

Exercise 13.4 Let ρ be a coherent risk measure on $\mathcal{L}^{\infty}(\Omega, \mathcal{F})$ and assume that ρ admits a representation

$$\rho(X) = \sup_{Q \in \mathcal{Q}} E_Q(-X)$$

with some class $\mathcal{Q} \subset \mathcal{M}_{1,f}$.

- (a) Show that $\rho(X) + \rho(-X) \ge 0$ for all $X \in \mathcal{L}^{\infty}(\Omega, \mathcal{F})$.
- (b) Show that the following condition are equivalent.
 - 1. ρ is additive, i.e., $\rho(X+Y) = \rho(X) + \rho(Y)$ for all $X, Y \in \mathcal{L}^{\infty}(\Omega, \mathcal{F})$.
 - 2. $\rho(X) + \rho(-X) = 0$ for all $X \in \mathcal{L}^{\infty}(\Omega, \mathcal{F})$
 - 3. The class Q reduces to a single element Q, i.e., ρ is simply expected loss with respect to Q.