Introduction to mathematical finance

Solution sheet 13

Solution 13.1

1. First note that $(\xi \bullet X)_{T} \subset \mathcal{C}$. Therefore, $u_{\mathcal{C}}(x) \geq u(x)$.

Suppose f^{*} is a maximizer. Then, since $f^{*} \in \mathcal{C}, f^{*}=\left(\xi^{*} \bullet X\right)_{T}-Y$ for some $\xi^{*} \in \Xi$ and $Y \geq 0$, and

$$
u_{\mathcal{C}}(x)=E\left[U\left(x+\left(\xi^{*} \bullet X\right)_{T}-Y\right)\right] .
$$

Since U is strictly increasing, Y must be identically zero. Hence, $u_{\mathcal{C}}(x)=u(x)$, and the optimizer f^{*} corresponds to an optimizer ξ^{*} for the first problem.
On the other hand, if ξ^{*} is an optimizer of the first problem, then $f^{*}=\left(\xi^{*} \bullet X\right)_{T}$ must optimize the second, for otherwise there would exist a strictly better f^{\prime}, and by the argument above also a strictly better ξ^{\prime}, violating the assumption that ξ^{*} is an optimizer.
2. Since Ω is finite, every f is bounded from below by $\min _{\omega} f$. Therefore, by Theorem II.7.2,

$$
f \in \mathcal{C} \quad \Longleftrightarrow \quad E_{Q}[f] \leq 0, \quad \forall Q \in \mathbb{P}_{e}
$$

We need to extend this statement to \mathbb{P}_{a}. If $E_{Q}[f] \leq 0$ for all $Q \in \mathbb{P}_{a}$, the desired implication holds trivially. On the other hand, suppose $f \in \mathcal{C}$. Then $E_{Q}[f] \leq 0$ for all EMMs Q. Thus,

$$
\sup _{Q \in \mathbb{P}_{e}} E_{Q}[f] \leq 0
$$

and, by Exercise 3.1,

$$
\sup _{Q \in \mathbb{P}_{a}} E_{Q}[f] \leq 0
$$

This is what we wanted to show.

