Introduction to mathematical finance

Solution sheet 13

Solution 13.1

1. First note that $(\xi \bullet X)_T \subset \mathcal{C}$. Therefore, $u_{\mathcal{C}}(x) \ge u(x)$.

Suppose f^* is a maximizer. Then, since $f^* \in \mathcal{C}$, $f^* = (\xi^* \bullet X)_T - Y$ for some $\xi^* \in \Xi$ and $Y \ge 0$, and

$$u_{\mathcal{C}}(x) = E\left[U(x + (\xi^* \bullet X)_T - Y)\right].$$

Since U is strictly increasing, Y must be identically zero. Hence, $u_{\mathcal{C}}(x) = u(x)$, and the optimizer f^* corresponds to an optimizer ξ^* for the first problem.

On the other hand, if ξ^* is an optimizer of the first problem, then $f^* = (\xi^* \bullet X)_T$ must optimize the second, for otherwise there would exist a strictly better f', and by the argument above also a strictly better ξ' , violating the assumption that ξ^* is an optimizer.

2. Since Ω is finite, every f is bounded from below by $\min_{\omega} f$. Therefore, by Theorem II.7.2,

$$f \in \mathcal{C} \iff E_Q[f] \le 0, \quad \forall Q \in \mathbb{P}_e.$$

We need to extend this statement to \mathbb{P}_a . If $E_Q[f] \leq 0$ for all $Q \in \mathbb{P}_a$, the desired implication holds trivially. On the other hand, suppose $f \in \mathcal{C}$. Then $E_Q[f] \leq 0$ for all EMMs Q. Thus,

$$\sup_{Q\in\mathbb{P}_e} E_Q[f] \le 0,$$

and, by Exercise 3.1,

$$\sup_{Q\in\mathbb{P}_a}E_Q[f]\leq 0.$$

This is what we wanted to show.