Algebraic Curves (FS 2017)

Exercise Sheet 1

- 1. Show that every regular (holomorphic) function on a nonsingular, connected projective curve C is constant. Can you write down two proofs, once seeing C as an algebraic variety and once as a complex manifold?
- **2.** Consider the meromorphic function $f(z) = \frac{z^3 z^2}{z^2 + 1}$ on \mathbb{C} .
 - i) Using the identification $\mathbb{C} \subset \mathbb{CP}^1$, $z \mapsto [1:z]$, on source and target, identify f as a map $\mathbb{CP}^1 \to \mathbb{CP}^1$ and write it in the form $[x:y] \mapsto [F(x,y), G(x,y)]$ for homogeneous polynomials F, G of the same degree, having no common zeroes on \mathbb{CP}^1 .
 - ii) Compute $\operatorname{div}(f)$.
- **3.** Let $\Lambda \subset \mathbb{C}$ be a lattice (i.e. $\Lambda = \mathbb{Z}v + \mathbb{Z}w$ for $v, w \in \mathbb{C}$ two \mathbb{R} -linearly independent vectors).
 - i) Convince yourself that C/Λ with the quotient topology is a torus (i.e. a compact oriented surface of genus 1) and that it has the structure of a complex manifold of dimension 1, i.e. an algebraic curve.
 - ii) A meromorphic function f on \mathbb{C} is called *doubly periodic* (with respect to Λ) if $f(z + \omega) = f(z)$ for all $\omega \in \Lambda$. Show that every holomorphic doubly periodic function $f : \mathbb{C} \to \mathbb{C}$ is constant.
 - iii) Assume f is doubly periodic with no poles on the boundary of the *funda-mental domain*

$$D = \{\lambda v + \mu w : 0 \le \lambda, \mu \le 1\}.$$

Show that the sum of the residues of all poles of f inside D is zero. Conclude that no such f can have a unique simple pole in D.

iv) The Weierstrass \wp -function of the lattice Λ is defined by

$$\wp(z) = \frac{1}{z^2} + \sum_{w \in \Lambda \setminus \{0\}} \left[\frac{1}{(z-w)^2} - \frac{1}{w^2} \right] \text{ for } z \in \mathbb{C} \setminus \Lambda.$$

With some work you can show that this series converges absolutely for every $z \in \mathbb{C} \setminus \Lambda$ and uniformly on compact subsets of $\mathbb{C} \setminus \Lambda$, so \wp defines a meromorphic function with double poles at the elements of Λ .

Show that the derivative \wp' is doubly periodic and odd $(\wp'(-z) = -\wp'(z))$ and that \wp is even $(\wp(-z) = \wp(z))$. Use this to show that \wp is doubly periodic.

v) Show that \wp' has simple zeroes exactly at the points $\frac{v}{2} + \Lambda$, $\frac{w}{2} + \Lambda$, $\frac{v+w}{2} + \Lambda$. *Hint:* Here you can use that $\wp' : \mathbb{C}/\Lambda \dashrightarrow \mathbb{C}$ satisfies $\deg(\operatorname{div}(\wp')) = 0$.

- vi) Prove that every doubly periodic function f with double poles exactly at the elements of Λ is of the form $f(z) = a\wp(z) + b$ for $a \in \mathbb{C}^*, b \in \mathbb{C}$. So up to translation $(z \mapsto z + z_0)$, scaling and adding constant functions, \wp is the unique doubly periodic function having as poles the Λ -translates of one double pole!
- vii) Let the Laurent expansion of (the even function) \wp around z=0 be given by

$$\wp(z) = \frac{1}{z^2} + c + \frac{1}{20}g_2z^2 + \frac{1}{28}g_3z^4 + O(z^6).$$

Show that c = 0 and that \wp satisfies the differential equation

$$[\wp'(z)]^2 = 4[\wp(z)]^3 - g_2\wp(z) - g_3.$$

Hint: Use part ii).

Thus we have a holomorphic map

$$g: \mathbb{C}/\Lambda \to E = V(Y^2 Z - 4X^3 + g_2 X Z^2 + g_3 Z^3) \subset \mathbb{CP}^2, z \mapsto [\wp(z): \wp'(z): 1],$$

with coordinates [X : Y : Z] on \mathbb{CP}^2 , sending z = 0 to [0 : 1 : 0].

- viii)* Show that E is a smooth algebraic curve if $(g_2)^3 27(g_3)^2 \neq 0$ (if you are unfamiliar with such calculations in projective space, just show that $V(y^2 4x^3 + g_2x + g_3) \subset \mathbb{C}^2$ is smooth in this case).
 - ix)* Conclude that g is an isomorphism.

Due March 2.

Exercises with * are possibly harder and should be considered as optional challenges.