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Exercise Sheet 1 - Solutions

1. Show that every regular (holomorphic) function on a nonsingular, connected
projective curve C' is constant. Can you write down two proofs, once seeing C'
as an algebraic variety and once as a complex manifold?

Solution

Algebra style: A regular function on C' corresponds to a morphism f : C' — C
of algebraic varieties. As C'is projective, its image under any algebraic morphism
g : C — V to some variety V is closed in V' and itself projective. In particular
this holds for f(C') C C. On the other hand, subvarieties of C are the zero-sets
of ideals I C C[z] inside the ring of regular functions C[z] on C. This ring is
a principal ideal domain, so I = (h) for h € C[z]. If h = 0, we have for its
vanishing set V(h) = C, but f(C) = V(h) # C since C is not projective. If
h # 0 then it has only finitely many zeroes, so V(h) = f(C) is a finite collection
of points. As C' is connected, so is f(C), hence f(C) is a single point, i.e. f is
constant.

Analysis style: As f : C' — C is continuous (with respect to the complex
topology on C' and C) and as C'is compact, f(C) is compact too. Let p € C' be
a point where | f| obtains its maximum, then taking a little chart ¢ : C D U — C
around p we find that the holomorphic function f o ¢ obtains a maximum of
its absolute value at ¢~'(p), hence is constant equal to some ¢ € C by the
maximum principle. But the set of points ¢ € C' such that f is constant equal
to ¢ in a neighbourhood of ¢ is open (by definition) and closed (essentially by
the identity theorem). Thus as C' is connected, the function f is globally equal
to c.
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2. Consider the meromorphic function f(z) = 275 on C.

i) Using the identification C C CP', z + [1 : 2], on source and target, identify
f as amap CP' — CP' and write it in the form [z : y] — [F(z,7), G(z,y)]
for homogeneous polynomials F, G of the same degree, having no common
zeroes on CP*.

ii) Compute div(f).
Solution

i) Using the identification given above, we want F,G to satisfy
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[z:yl=[1: 2] = [Fz,y) : Gz, y)] = [1: ]



ii)

for x # 0 and F(z,y) # 0. The first equality gives z = y/x and then the
second equality reads

Gly) _ (/2 — (/) _ " P~y
F(z,y)  (y/z)*+1 SRy +a?)

so we can take G(z,y) = v — y?z, F(x,y) = z(y* + 2?). We see that we
have essentially just homogenized the numerator and denominator of the
original rational function, adding a suitable power of z in the denominator
as they had different degrees in z.

We have y* — y*zr = y*(y — z) and x(y* + 2*) = z(y + iz)(y — iz), so the
zeroes of the numerator on CP' are at y = 0 (i.e. [1 : 0]) with multiplicity
2 and at y—x = 0 (i.e. [1 : 1]). The zeroes of the denominator are at [0 : 1],
[1:—i] and [1 : 4] (all simple), so

div(f)=2[1:0]+[1:1]—=[0:1] —[1:—i] —[1:4].

3. Let A C Cbe a lattice (i.e. A = Zv+Zw for v,w € C two R-linearly independent
vectors).

i)

ii)

iii)

iv)

Convince yourself that C/A with the quotient topology is a torus (i.e. a
compact oriented surface of genus 1) and that it has the structure of a
complex manifold of dimension 1, i.e. an algebraic curve.

A meromorphic function f on C is called doubly periodic (with respect to
A) if f(z 4+ w) = f(2) for all w € A. Show that every holomorphic doubly
periodic function f : C — C is constant.

Assume f is doubly periodic with no poles on the boundary of the funda-
mental domain
D={ +pw:0<\u<l1}.

Show that the sum of the residues of all poles of f inside D is zero. Conclude
that no such f can have a unique simple pole in D.

The Weierstrass g-function of the lattice A is defined by

p(z)z%—k > {ﬁ—%} for z € C\ A.

weA\{0}

With some work you can show that this series converges absolutely for
every z € C\ A and uniformly on compact subsets of C \ A, so g defines
a meromorphic function with double poles at the elements of A.

Show that the derivative ¢ is doubly periodic and odd (¢'(—z) = —¢'(2))
and that p is even (p(—z) = p(2)). Use this to show that p is doubly
periodic.

Show that ¢’ has simple zeroes exactly at the points §+ A, 5 + A, 252 4 A,

Hint: Here you can use that o' : C/A --» C satisfies deg(div(g’)) = 0.



vi)

vii)

viii)*

ix)*

Prove that every doubly periodic function f with double poles exactly at
the elements of A is of the form f(z) = ap(z) + b for a € C*,;b € C. So
up to translation (z — z + 2p), scaling and adding constant functions, o
is the unique doubly periodic function having as poles the A-translates of
one double pole!

Let the Laurent expansion of (the even function) g around z = 0 be given
by
1 Loy, 1y 6
o(z) = 2 +c+ 2092% + 28937 + 0(2°).
Show that ¢ = 0 and that p satisfies the differential equation

[0/ ()] = 4[p(2)]° — g20(2) — gs-
Hint: Use part ii).
Thus we have a holomorphic map
g:C/AN = E=V(Y?Z-A4X3+ g, X7 +g37%) C CP? 2+ [p(2) : ¢/(2) : 1],

with coordinates [X : Y : Z] on CP?, sending z =0 to [0: 1:0].

Show that F is a smooth algebraic curve if (g9)® — 27(g3)* # 0 (if you
are unfamiliar with such calculations in projective space, just show that
V(y* — 423 + gox + g3) C C? is smooth in this case).

Conclude that g is an isomorphism.

Solution

i)

ii)

iii)

The first part is basic topology. To obtain an atlas of C/A as a complex
manifold, one can restrict the quotient map C — C/A to small open subsets
U C C (in the sense that U N (Uxea\yoy A + U) = 0. These maps U — C/A
cover C/A and the transition maps are simply translations z — z + \ for
A € A, so in particular holomorphic.

With definition of D as in iii) we see f(C) = f(D) by double periodicity,
which is compact (as D compact, f continuous) and thus bounded. By
Liouville’s theorem, every bounded holomorphic function is constant.

By the residue theorem we have

27 Z Res, f = f(z)dz.
oD

p€lnt(D)

The path 0D decomposes into line segments 0 — v, v = v + w,v + w —
w,w — 0 and by double periodicity, the integrals 0 — v and v + w — w
cancel each other (similarly v — v +w and w — 0), hence the integral on
the right vanishes.

If f had a single simple pole p, we would have Res, f = 0 giving a contra-
diction to the fact that f has a pole at p, so no such f can exist.



iv)

vi)

As the series of holomorphic functions converges uniformly on compact
subsets, we can switch differentiation and summation and see

()= 2 NI «
plz) = BT Z (z —w)? Z (z —w)?

weA\{0} wEA

The sum on the right is clearly invariant under shifts z — 2z 4+ wy by
elements of wy € A (this just induces a bijection of the index set A of the
summation), so ¢’ is doubly periodic. Similarly, the bijection A — A, w +—
—w is used to show that ¢’ is odd. The same bijection also works to show
that g is even (using 1/(—w)? = 1/w?).

For g the double periodicity is not entirely clear a priori because of the
summands —1/(w?) we added to achieve convergence. However, given the
generator v € A, the function z — p(z+v)—p(z) has derivative p'(z4v)—
@ (z) =0, s0 as C\ A is connected, it is constant. Its value is determined
to be zero by evaluation at z = —v/2 ¢ A (where p even is used for the
second equality):

p(=v/2 +v) = p(v/2) = p(=v/2) = p(z+v) = p(2)|:=—v/2 = 0.

The same argument shows periodicity of o with v replaced by w, so indeed
¢ is doubly periodic.

The meromorphic function ¢’ : C/A --» C gives a holomorphic function
¢ : C/A — CP'. The preimage of oo is the set of poles of ¢ and from
the sum above we see that it has exactly one pole of order 3 at the class
[0] € C/A. If 2, ...,z are the zeroes of ¢’ with multiplicities nq, ..., n,,
then

deg(div(g')) = deg(—3[oo] +n1[z1] + ... +n.[2]) = =34+n1+...+n,. = 0.

Thus @’ can have at most r = 3 zeroes (all n; > 1) with n;, = 1 for r = 3.
But for 2z € A and z ¢ A we have ¢/(2) = ¢'(z — 22) = ¢'(—2) = —¢/(2),
using that ' is odd. Hence ¢/(z) = 0 for z = £, % *2% We have thus
found three distinct zeroes and by the argument above they are all simple
and there are no further zeroes.

If f has double poles exactly at the elements of A, we can write the Laurent
expansion of f around z =0 as

The function f(z) — ap(z) is doubly periodic with at most a single simple
pole at z = 0, thus constant equal to some b € C by ii).



vii)

viii)*

We have ¢ = 0 by evaluating the sum over w € A\ {0} in the definition of
o at z = 0. The Laurent expansion of ¢/(z) at z = 0 is given by

2 1 1
1Y 3 5
o' (2) = T3 TR T seE T 0(2°).
By the Cauchy product rule for Laurent series, its square is given by
4 2 4
/ 2 _ -2
[0'(2)]" = 6 5 T T 50 + O(2).

Similarly, the cube of p(z) is given by

1 3 _ 3
[p(2)]* = =6 + %922 2+ %93 + O(2).

Summing up we find

¢/ ()] = 4lp(2)] + g20(2) + g5

=(4—4)z7% + (—g _3 +1)go27 % + (—é _3 +1)g3 + O(2) = O(2)
5 5 T 7
Thus the doubly periodic function [¢/(2)]*> — 4[p(2)]* + g29(2) + g3 is ho-
lomorphic and vanishes at zero, hence is equal to zero by ii).
The map g sends z =0 to [0: 1:0] as ¢’ has a triple pole and @ has only
a double pole at z = 0, so roughly

z—0
0(2) 1 9(2) 1] = [p()/(2) : 11/ ()] 2212 2] 2% 012 0]
For a smooth function f : R® — R the inverse function theorem from

Analysis/Differential geometry states that the level set { f = 0} is a smooth
manifold of dimension n — 1 around a point p € {f = 0} if the gradient

0 0
grad(f) = (a—i, . 811)

is nonzero at p. The same is true if we replace R by C and “smooth” by
“complex”.

To apply this to our setting, we can check that F is smooth (i.e. a complex
manifold) on an open cover of E. One such open set is given by the standard
chart
C? — CP?, (z,y) = [z :y: 1].

When looking at the equation of E, this just means we set Z = 1, so as
described in the hint, we want to prove smoothness of V(f = y* — 423 +
g2z + g3) C C2
The partial derivatives of f are given by

of 2 of

— = —122° + g5, =— = 2.

ox 92 dy Y
For them to simultaneously vanish at a point of E, we need to have y =
0, —1222 + go = 0 and of course still the original equation y? — 43 + gox +



ix)

g3 = 0 of E. Inserting the solutions (x,y) = (£+/92/12,0) of the first two
equations into the second yields

3 1
0= :]:(—4\/92/12 + g2/ 92/12) + 93 = igggvgg/?) + g3

But g3 = F1/3921/92/3 is equivalent (by taking the square) to (g3)* =
1/27(gs)?, so there exists a non-smooth point in C> N E iff this equation is
satisfied.

Now either one can check smoothness on the other two charts of CP? by
hand, or one uses that in general (by a slightly more careful analysis of the
three charts) we can find the non-smooth points of V(F(X,Y, 7)) C CP?
as the simultaneous vanishing locus of

oF oF oF
oxX oy’ 0z’ )

In our case this gives
(—12X2 + g2 2% 2Y Z, Y2 + 205 X Z 4+ 33 2% Y2 Z — 4X> + o X 72 + g3 7°).

Our argument above shows that for Z # 0 we have a solution iff (g;)% —
27(g3)? = 0, because for any solution (X,Y, Z) also A\(X,Y, Z) is a solution,
so we can scale Z to be 1. For Z = 0 the equations simplify to

(—12X2,0,Y? —4X?)

implying that X = 0,Y =0, Z = 0, which gives a contradiction. So we see
that the points of EN{Z = 0} are always smooth. This finishes the proof
that F is smooth iff (g2)* — 27(g3)* # 0.

Now the lecture defines an algebraic curve to be connected, so this is
something we still have to check for E. The easiest argument uses the
Theorem of Bézout: assume E decomposes into two components F,, Ey of
degrees €1, €5 (in the sense that Ej is cut out by a polynomial F of degree
e; and Esy by a polynomial F; of degree e3). For their defining polynomials
it follows then that (after possibly scaling by a nonzero constant) Fj Fy =
Y27 —4X3 + g2 X 72 + g373 = F. By Bézout’s theorem the curves £, E
must meet in ejey points (counted with multiplicity). All we need from
this is that they meet in some point p € E. At this point, we have Fj(p) =
Fy(p) =0, so we see

8F( )_aFl
ox, P~ ax,

=0+0=0

Fs(p) + F
(P)Fa(p) + Fi(p) 55
for X; = X, Y, Z. In other words the point p is a singular (i.e. non-smooth)
point of E. This is a contradiction to the computation above, so E can
only have one component and thus it is connected.

By part i) we have that C/A is an algebraic curve and by part viii) we know
that E is an algebraic curve. As p(z) is non-constant, we see that g is a
non-constant map between these curves. To show that ¢ is an isomorphism



we can for instance show that it is of degree 1 (i.e. every point has a
unique preimage point, so g is surjective and injective). But to compute
the degree we can simply check the number of preimages for any point
in £. Looking at p = [0 : 1 : 0] € E we know this point can only have
z =0 € C/A as preimage (as reaching it via g requires ¢'(z) to have a pole).
To compute the multiplicity of the preimage, we look at the chart ¥ =1
with coordinates x = X/Y,z = Z/Y, so g is given in these coordinates
by (x,y) = (p(2)/¢'(2),1/¢'(2)). The curve E is cut out in this chart by
2—4a3 4 goxz®+g323. We see that the partial derivative of this equation with
respect to z does not vanish at (z, z) = (0,0), so around (0, 0) the curve £
is the graph of a function z(x). In other words, in a small neighbourhood
of 0 € C we have a chart z — (z,2(z)) of E with inverse given by 7 :
(x,2) — x.

To compute the multiplicity of the preimage z = 0 of p € F under g we
use this chart and see that ¢~ '(p) = g~ (7' ({z = 0})), so we only have
to see with which multiplicity x = X/Y = p(z)/¢/(2) vanishes at z = 0.
Since p(z) has a double pole at z = 0 and ©'(z) has a triple pole, this
multiplicity is 1 and this is also the degree of g, so g is an isomorphism.

Due March 2.

Exercises with * are possibly harder and should be considered as optional challenges.



