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Exercise Sheet 1 - Solutions

1. Show that every regular (holomorphic) function on a nonsingular, connected
projective curve C is constant. Can you write down two proofs, once seeing C
as an algebraic variety and once as a complex manifold?

Solution

Algebra style: A regular function on C corresponds to a morphism f : C → C
of algebraic varieties. As C is projective, its image under any algebraic morphism
g : C → V to some variety V is closed in V and itself projective. In particular
this holds for f(C) ⊂ C. On the other hand, subvarieties of C are the zero-sets
of ideals I ⊂ C[x] inside the ring of regular functions C[x] on C. This ring is
a principal ideal domain, so I = (h) for h ∈ C[x]. If h = 0, we have for its
vanishing set V (h) = C, but f(C) = V (h) 6= C since C is not projective. If
h 6= 0 then it has only finitely many zeroes, so V (h) = f(C) is a finite collection
of points. As C is connected, so is f(C), hence f(C) is a single point, i.e. f is
constant.

Analysis style: As f : C → C is continuous (with respect to the complex
topology on C and C) and as C is compact, f(C) is compact too. Let p ∈ C be
a point where |f | obtains its maximum, then taking a little chart ϕ : C ⊃ U → C
around p we find that the holomorphic function f ◦ ϕ obtains a maximum of
its absolute value at ϕ−1(p), hence is constant equal to some c ∈ C by the
maximum principle. But the set of points q ∈ C such that f is constant equal
to c in a neighbourhood of q is open (by definition) and closed (essentially by
the identity theorem). Thus as C is connected, the function f is globally equal
to c.

2. Consider the meromorphic function f(z) = z3−z2
z2+1

on C.

i) Using the identification C ⊂ CP1, z 7→ [1 : z], on source and target, identify
f as a map CP1 → CP1 and write it in the form [x : y] 7→ [F (x, y), G(x, y)]
for homogeneous polynomials F,G of the same degree, having no common
zeroes on CP1.

ii) Compute div(f).

Solution

i) Using the identification given above, we want F,G to satisfy

[x : y] = [1 : z] 7→ [F (x, y) : G(x, y)] = [1 :
z3 − z2

z2 + 1
]



for x 6= 0 and F (x, y) 6= 0. The first equality gives z = y/x and then the
second equality reads

G(x, y)

F (x, y)
=

(y/x)3 − (y/x)2

(y/x)2 + 1
=

y3−y2x
x3

y2+x2

x2

=
y3 − y2x

x(y2 + x2)
,

so we can take G(x, y) = y3 − y2x, F (x, y) = x(y2 + x2). We see that we
have essentially just homogenized the numerator and denominator of the
original rational function, adding a suitable power of x in the denominator
as they had different degrees in z.

ii) We have y3 − y2x = y2(y − x) and x(y2 + x2) = x(y + ix)(y − ix), so the
zeroes of the numerator on CP1 are at y = 0 (i.e. [1 : 0]) with multiplicity
2 and at y−x = 0 (i.e. [1 : 1]). The zeroes of the denominator are at [0 : 1],
[1 : −i] and [1 : i] (all simple), so

div(f) = 2[1 : 0] + [1 : 1]− [0 : 1]− [1 : −i]− [1 : i].

3. Let Λ ⊂ C be a lattice (i.e. Λ = Zv+Zw for v, w ∈ C two R-linearly independent
vectors).

i) Convince yourself that C/Λ with the quotient topology is a torus (i.e. a
compact oriented surface of genus 1) and that it has the structure of a
complex manifold of dimension 1, i.e. an algebraic curve.

ii) A meromorphic function f on C is called doubly periodic (with respect to
Λ) if f(z + ω) = f(z) for all ω ∈ Λ. Show that every holomorphic doubly
periodic function f : C→ C is constant.

iii) Assume f is doubly periodic with no poles on the boundary of the funda-
mental domain

D = {λv + µw : 0 ≤ λ, µ ≤ 1}.

Show that the sum of the residues of all poles of f insideD is zero. Conclude
that no such f can have a unique simple pole in D.

iv) The Weierstrass ℘-function of the lattice Λ is defined by

℘(z) =
1

z2
+

∑
w∈Λ\{0}

[
1

(z − w)2
− 1

w2

]
for z ∈ C \ Λ.

With some work you can show that this series converges absolutely for
every z ∈ C \ Λ and uniformly on compact subsets of C \ Λ, so ℘ defines
a meromorphic function with double poles at the elements of Λ.

Show that the derivative ℘′ is doubly periodic and odd (℘′(−z) = −℘′(z))
and that ℘ is even (℘(−z) = ℘(z)). Use this to show that ℘ is doubly
periodic.

v) Show that ℘′ has simple zeroes exactly at the points v
2

+Λ, w
2

+Λ, v+w
2

+Λ.
Hint: Here you can use that ℘′ : C/Λ 99K C satisfies deg(div(℘′)) = 0.



vi) Prove that every doubly periodic function f with double poles exactly at
the elements of Λ is of the form f(z) = a℘(z) + b for a ∈ C∗, b ∈ C. So
up to translation (z 7→ z + z0), scaling and adding constant functions, ℘
is the unique doubly periodic function having as poles the Λ-translates of
one double pole!

vii) Let the Laurent expansion of (the even function) ℘ around z = 0 be given
by

℘(z) =
1

z2
+ c+

1

20
g2z

2 +
1

28
g3z

4 +O(z6).

Show that c = 0 and that ℘ satisfies the differential equation

[℘′(z)]2 = 4[℘(z)]3 − g2℘(z)− g3.

Hint: Use part ii).

Thus we have a holomorphic map

g : C/Λ→ E = V (Y 2Z−4X3+g2XZ
2+g3Z

3) ⊂ CP2, z 7→ [℘(z) : ℘′(z) : 1],

with coordinates [X : Y : Z] on CP2, sending z = 0 to [0 : 1 : 0].

viii)* Show that E is a smooth algebraic curve if (g2)3 − 27(g3)2 6= 0 (if you
are unfamiliar with such calculations in projective space, just show that
V (y2 − 4x3 + g2x+ g3) ⊂ C2 is smooth in this case).

ix)* Conclude that g is an isomorphism.

Solution

i) The first part is basic topology. To obtain an atlas of C/Λ as a complex
manifold, one can restrict the quotient map C→ C/Λ to small open subsets
U ⊂ C (in the sense that U ∩ (∪λ∈Λ\{0}λ+U) = ∅. These maps U → C/Λ
cover C/Λ and the transition maps are simply translations z 7→ z + λ for
λ ∈ Λ, so in particular holomorphic.

ii) With definition of D as in iii) we see f(C) = f(D) by double periodicity,
which is compact (as D compact, f continuous) and thus bounded. By
Liouville’s theorem, every bounded holomorphic function is constant.

iii) By the residue theorem we have

2πi
∑

p∈Int(D)

Respf =

∫
∂D

f(z)dz.

The path ∂D decomposes into line segments 0 → v, v → v + w, v + w →
w,w → 0 and by double periodicity, the integrals 0 → v and v + w → w
cancel each other (similarly v → v + w and w → 0), hence the integral on
the right vanishes.

If f had a single simple pole p, we would have Respf = 0 giving a contra-
diction to the fact that f has a pole at p, so no such f can exist.



iv) As the series of holomorphic functions converges uniformly on compact
subsets, we can switch differentiation and summation and see

℘′(z) = − 2

z3
+

∑
w∈Λ\{0}

− 2

(z − w)3
=
∑
w∈Λ

− 2

(z − w)3
.

The sum on the right is clearly invariant under shifts z 7→ z + w0 by
elements of w0 ∈ Λ (this just induces a bijection of the index set Λ of the
summation), so ℘′ is doubly periodic. Similarly, the bijection Λ→ Λ, w 7→
−w is used to show that ℘′ is odd. The same bijection also works to show
that ℘ is even (using 1/(−w)2 = 1/w2).

For ℘ the double periodicity is not entirely clear a priori because of the
summands −1/(w2) we added to achieve convergence. However, given the
generator v ∈ Λ, the function z 7→ ℘(z+v)−℘(z) has derivative ℘′(z+v)−
℘′(z) = 0, so as C \ Λ is connected, it is constant. Its value is determined
to be zero by evaluation at z = −v/2 /∈ Λ (where ℘ even is used for the
second equality):

℘(−v/2 + v) = ℘(v/2) = ℘(−v/2) =⇒ ℘(z + v)− ℘(z)|z=−v/2 = 0.

The same argument shows periodicity of ℘ with v replaced by w, so indeed
℘ is doubly periodic.

v) The meromorphic function ℘′ : C/Λ 99K C gives a holomorphic function
℘′ : C/Λ → CP1. The preimage of ∞ is the set of poles of ℘′ and from
the sum above we see that it has exactly one pole of order 3 at the class
[0] ∈ C/Λ. If z1, . . . , zr are the zeroes of ℘′ with multiplicities n1, . . . , nr,
then

deg(div(℘′)) = deg(−3[∞] +n1[z1] + . . .+nr[zr]) = −3 +n1 + . . .+nr = 0.

Thus ℘′ can have at most r = 3 zeroes (all ni ≥ 1) with ni = 1 for r = 3.

But for 2z ∈ Λ and z /∈ Λ we have ℘′(z) = ℘′(z − 2z) = ℘′(−z) = −℘′(z),
using that ℘′ is odd. Hence ℘′(z) = 0 for z = v

2
, w

2
, v+w

2
. We have thus

found three distinct zeroes and by the argument above they are all simple
and there are no further zeroes.

vi) If f has double poles exactly at the elements of Λ, we can write the Laurent
expansion of f around z = 0 as

f(z) =
a

z2
+O(z−1).

On the other hand, the Laurent expansion of ℘(z) is given by

℘(z) =
1

z2
+O(z−1).

The function f(z)− a℘(z) is doubly periodic with at most a single simple
pole at z = 0, thus constant equal to some b ∈ C by ii).



vii) We have c = 0 by evaluating the sum over w ∈ Λ \ {0} in the definition of
℘ at z = 0. The Laurent expansion of ℘′(z) at z = 0 is given by

℘′(z) = − 2

z3
+

1

10
g2z +

1

7
g3z

3 +O(z5).

By the Cauchy product rule for Laurent series, its square is given by

[℘′(z)]2 =
4

z6
− 2

5
g2z
−2 − 4

7
g3 +O(z).

Similarly, the cube of ℘(z) is given by

[℘(z)]3 =
1

z6
+

3

20
g2z
−2 +

3

28
g3 +O(z).

Summing up we find

[℘′(z)]2 − 4[℘(z)]3 + g2℘(z) + g3

=(4− 4)z−6 + (−2

5
− 3

5
+ 1)g2z

−2 + (−4

7
− 3

7
+ 1)g3 +O(z) = O(z)

Thus the doubly periodic function [℘′(z)]2 − 4[℘(z)]3 + g2℘(z) + g3 is ho-
lomorphic and vanishes at zero, hence is equal to zero by ii).

The map g sends z = 0 to [0 : 1 : 0] as ℘′ has a triple pole and ℘ has only
a double pole at z = 0, so roughly

[℘(z) : ℘′(z) : 1] = [℘(z)/℘′(z) : 1 : 1/℘′(z)] ≈ [z : 1 : z3]
z→0−−→ [0 : 1 : 0].

viii)* For a smooth function f : Rn → R the inverse function theorem from
Analysis/Differential geometry states that the level set {f = 0} is a smooth
manifold of dimension n− 1 around a point p ∈ {f = 0} if the gradient

grad(f) =

(
∂f

∂x1

, . . . ,
∂f

∂xn

)
is nonzero at p. The same is true if we replace R by C and “smooth” by
“complex”.

To apply this to our setting, we can check that E is smooth (i.e. a complex
manifold) on an open cover of E. One such open set is given by the standard
chart

C2 ↪→ CP2, (x, y) 7→ [x : y : 1].

When looking at the equation of E, this just means we set Z = 1, so as
described in the hint, we want to prove smoothness of V (f = y2 − 4x3 +
g2x+ g3) ⊂ C2.

The partial derivatives of f are given by

∂f

∂x
= −12x2 + g2,

∂f

∂y
= 2y.

For them to simultaneously vanish at a point of E, we need to have y =
0,−12x2 + g2 = 0 and of course still the original equation y2− 4x3 + g2x+



g3 = 0 of E. Inserting the solutions (x, y) = (±
√
g2/12, 0) of the first two

equations into the second yields

0 = ±(−4
√
g2/12

3
+ g2

√
g2/12) + g3 = ±1

3
g2

√
g2/3 + g3

But g3 = ∓1/3g2

√
g2/3 is equivalent (by taking the square) to (g3)2 =

1/27(g2)3, so there exists a non-smooth point in C2 ∩E iff this equation is
satisfied.

Now either one can check smoothness on the other two charts of CP2 by
hand, or one uses that in general (by a slightly more careful analysis of the
three charts) we can find the non-smooth points of V (F (X, Y, Z)) ⊂ CP2

as the simultaneous vanishing locus of(
∂F

∂X
,
∂F

∂Y
,
∂F

∂Z
, F

)
.

In our case this gives

(−12X2 + g2Z
2, 2Y Z, Y 2 + 2g2XZ + 3g3Z

2, Y 2Z − 4X3 + g2XZ
2 + g3Z

3).

Our argument above shows that for Z 6= 0 we have a solution iff (g2)3 −
27(g3)2 = 0, because for any solution (X, Y, Z) also λ(X, Y, Z) is a solution,
so we can scale Z to be 1. For Z = 0 the equations simplify to

(−12X2, 0, Y 2,−4X3)

implying that X = 0, Y = 0, Z = 0, which gives a contradiction. So we see
that the points of E ∩ {Z = 0} are always smooth. This finishes the proof
that E is smooth iff (g2)3 − 27(g3)2 6= 0.

Now the lecture defines an algebraic curve to be connected, so this is
something we still have to check for E. The easiest argument uses the
Theorem of Bézout: assume E decomposes into two components E1, E2 of
degrees e1, e2 (in the sense that E1 is cut out by a polynomial F1 of degree
e1 and E2 by a polynomial F2 of degree e2). For their defining polynomials
it follows then that (after possibly scaling by a nonzero constant) F1F2 =
Y 2Z − 4X3 + g2XZ

2 + g3Z
3 = F . By Bézout’s theorem the curves E1, E2

must meet in e1e2 points (counted with multiplicity). All we need from
this is that they meet in some point p ∈ E. At this point, we have F1(p) =
F2(p) = 0, so we see

∂F

∂Xi

(p) =
∂F1

∂Xi

(p)F2(p) + F1(p)
∂F2

∂Xi

= 0 + 0 = 0

for Xi = X, Y, Z. In other words the point p is a singular (i.e. non-smooth)
point of E. This is a contradiction to the computation above, so E can
only have one component and thus it is connected.

ix)* By part i) we have that C/Λ is an algebraic curve and by part viii) we know
that E is an algebraic curve. As ℘(z) is non-constant, we see that g is a
non-constant map between these curves. To show that g is an isomorphism



we can for instance show that it is of degree 1 (i.e. every point has a
unique preimage point, so g is surjective and injective). But to compute
the degree we can simply check the number of preimages for any point
in E. Looking at p = [0 : 1 : 0] ∈ E we know this point can only have
z = 0 ∈ C/Λ as preimage (as reaching it via g requires ℘′(z) to have a pole).
To compute the multiplicity of the preimage, we look at the chart Y = 1
with coordinates x = X/Y, z = Z/Y , so g is given in these coordinates
by (x, y) = (℘(z)/℘′(z), 1/℘′(z)). The curve E is cut out in this chart by
z−4x3+g2xz

2+g3z
3. We see that the partial derivative of this equation with

respect to z does not vanish at (x, z) = (0, 0), so around (0, 0) the curve E
is the graph of a function z(x). In other words, in a small neighbourhood
of 0 ∈ C we have a chart x 7→ (x, z(x)) of E with inverse given by π :
(x, z) 7→ x.

To compute the multiplicity of the preimage z = 0 of p ∈ E under g we
use this chart and see that g−1(p) = g−1(π−1({x = 0})), so we only have
to see with which multiplicity x = X/Y = ℘(z)/℘′(z) vanishes at z = 0.
Since ℘(z) has a double pole at z = 0 and ℘′(z) has a triple pole, this
multiplicity is 1 and this is also the degree of g, so g is an isomorphism.

Due March 2.

Exercises with * are possibly harder and should be considered as optional challenges.


