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Exercise Sheet 2 - Solutions

1. Show that for curves Cg, Ch of genus g, h respectively there does not exist a
non-constant holomorphic map f : Cg → Ch if g < h. Hint: Given the results
from the lecture, the proof is very short, so don’t try something complicated!

Solution Assume such an f exists and let d > 0 be its degree, then Riemann-
Hurwitz tells us that

2g − 2 = d(2h− 2) + b

for b ≥ 0 the sum of the ramification indices of f . As 0 ≤ g < h, we have h ≥ 1
so 2h− 2 ≥ 0 and we have the following chain of inequalities

2g − 2 < 2h− 2 ≤ d(2h− 2) ≤ d(2h− 2) + b,

giving a contradiction to the equality above.

2. In the lecture you saw the following (seeming) contradiction to the Riemann-
Hurwitz formula: given a function f : C/Λ → CP1 with f−1([∞]) = d[0], it
looks like f(z) = c

zd
+ . . . around z = 0, so f ′(z) = −cd

zd+1 + . . .. Computing the
divisor we have

div(f ′) = [p1] + . . . [pb]− (d+ 1)[0].

As this should have degree 0 we know that (counted with multiplicities) f ′

has b = d + 1 zeroes, which are the ramification points of f . However, as the
genus of C/Λ is 1 and the genus of CP1 is 0, Riemann-Hurwitz tells us that
2− 2 = d(−2) + b, so we expect a total of b = 2d ramification points. What is
wrong in this counter-example?

Solution The equation f ′(z) = 0 tells us all ramification points that do not
map to ∞. However, ∞ is actually a branch point of f as f−1(∞) = d[0]
and the ramification index is d − 1, so the total ramification index is indeed
d+ 1 + (d− 1) = 2d.

3. In this exercise we want to recall the notion of a holomorphic differential form.
Let C be a complex manifold of dimension 1 and let (ϕi : Ui

∼−→ Wi ⊂ C)i∈I be
an atlas of C. Recall that this means that for i, j ∈ I the function

ψji = ϕ−1j ◦ ϕi : Uij = ϕ−1i (Wi ∩Wj)→ ϕ−1j (Wi ∩Wj) = Uji

is a biholomorphic map. Now a differential form ω on C is given by a collection
(ωi = fi(z)dz)i∈I of differential forms fi(z)dz on Ui which are compatible. This
compatibility means exactly that ψ∗jiωj = ωi|Uij

. Here the pullback is defined by

ψ∗jiωj = ψ∗ji(fj(z)dz) = fj(ψji(z))dψji(z) = fj(ψji(z))
dψji

dz
dz.

Denote the C-vector space of holomorphic differential forms on C by H0(C,ΩC).



i) The curve C = CP1 is covered by two charts

ϕ1 : U1 = C→ CP1, z 7→ [1 : z],

ϕ2 : U2 = C→ CP1, w 7→ [w : 1].

Use the definition above to show that H0(C,ΩC) = 0.

ii) Given a holomorphic map g : C → C ′ of complex manifolds of dimension
1, describe how to define the pullback g∗ω of a holomorphic differential
form ω on C ′ to C.

iii) Use part ii) to show that for C = C/Λ an elliptic curve (Λ ⊂ C a lattice),
the space H0(C,ΩC) has dimension 1.

iv)* The definition of holomorphic differential forms (and their pullback) ge-
neralizes to higher dimensional complex manifolds. Show that for a lattice
Λ inside Cg, the complex manifold T = Cg/Λ has a g-dimensional space
of holomorphic differentials and identify a basis of this space. Use this
basis together with parts i) and ii) to show that any holomorphic map
σ : CP1 → T is constant.

Solution

i) Let ω1 = f(z)dz and ω2 = g(w)dw. The base change map ψ21 : U1 ⊃ C∗ →
C∗ ⊂ U2 is given by ψ21(z) = 1/z. Indeed we have

ψ21 = ϕ−12 (ϕ1(z)) = ϕ−12 ([1 : z]) = ϕ−12 ([1/z : 1]) = 1/z.

Then the condition on the differentials ω1, ω2 is

f(z)dz = ω1 = ψ∗21ω2 = g(ψ21(z))dψ21(z) = g(1/z)
−dz
z2

.

Now f and g are holomorphic functions on all of C, so they are described
entirely by their power series expansion around zero. But then looking at
the equation f(z) = −g(1/z)/z2 we see that only f = g = 0 are a solution,
as the left hand side is holomorphic at z = 0 and the right is not unless
g = 0. Thus ω1 = 0, ω2 = 0, so every holomorphic differential vanishes on
CP1.

ii) Let g : C → C ′ be holomorphic, let ω be a holomorphic differential on C ′,
let ϕ′ : U ′ → W ′ ⊂ C ′ be a holomorphic chart such that ω is given on U ′ by
f(z)dz. Let ϕ : U → W ⊂ C be a chart of C such that g(W ) ⊂ W ′, then
as g is holomorphic, we have that the composition (ϕ′)−1 ◦ g ◦ ϕ : U → U ′

is holomorphic. Then the differential g∗ω on C is given in the chart ϕ by
((ϕ′)−1 ◦ g ◦ ϕ)

∗
f(z)dz. As C is covered by such charts ϕ (as the charts

ϕ′ cover C ′), this uniquely describes g∗ω. One shows that the differential
forms on the various charts U are compatible by using the complex chain
rule.

iii) We have a holomorphic map g : C → C = C/Λ given by the quotient
map. If ω is a differential on C, its pullback g∗ω is a differential on C, so
it is of the form g∗ω = f(z)dz for f a holomorphic function on C. Now as



g is invariant under translation on the source by elements of Λ, the form
g∗ω (and thus f) is doubly periodic. But a holomorphic doubly periodic
function f is constant, so g∗ω = c · dz for some c ∈ C. By restricting g to
small subsets of C we obtain an atlas of C, so indeed the differential form
ω is just given by c · dz in all such charts. Hence the map

C→ H0(C,ΩC), c 7→ c · dz

is an isomorphism.

iv)* Repeating the argument from iii) with the map h : Cg → Cg/Λ we see
that the pullback h∗ω of a holomorphic differential ω on Cg/Λ is given
by f1(z)dz1 + . . .+ fg(z)dzg. All functions fi are invariant under shifts by
Λ, so as Cg/Λ is compact, by the maximum principle they are constant.
Thus the space of differential forms is given by ω = c1dz1 + . . .+ cgdzg for
(c1, . . . , cg) ∈ Cg, so g-dimensional.

Assume σ : CP1 → T is holomorphic with p ∈ CP1 mapping to the image
of some chart ϕ : Cg ⊃ U → Cg/λ, given by a restriction of the quotient
map h. Then around p, the function ϕ−1 ◦ f is given by its coordinate
functions (σ1(z), . . . , σg(z)). For each i = 1, . . . , g the differential form dzi
on T pulls back to the zero form on CP1, as all holomorphic differentials
on CP1 vanish! Writing this explicitly we have

0 = σ∗dzi = d(zi ◦ σ) = dσi =
dσi
dz

dz.

Thus the derivative of σi is zero, so σi is constant for all i. Hence σ is
constant as claimed above.
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