Algebraic Curves (FS 2017)

Exercise Sheet 2 - Solutions

1. Show that for curves C_g, C_h of genus g, h respectively there does not exist a non-constant holomorphic map $f: C_g \to C_h$ if g < h. *Hint:* Given the results from the lecture, the proof is very short, so don't try something complicated!

Solution Assume such an f exists and let d > 0 be its degree, then Riemann-Hurwitz tells us that

$$2g - 2 = d(2h - 2) + b$$

for $b \ge 0$ the sum of the ramification indices of f. As $0 \le g < h$, we have $h \ge 1$ so $2h - 2 \ge 0$ and we have the following chain of inequalities

$$2g - 2 < 2h - 2 \le d(2h - 2) \le d(2h - 2) + b,$$

giving a contradiction to the equality above.

2. In the lecture you saw the following (seeming) contradiction to the Riemann-Hurwitz formula: given a function $f : \mathbb{C}/\Lambda \to \mathbb{CP}^1$ with $f^{-1}([\infty]) = d[0]$, it looks like $f(z) = \frac{c}{z^d} + \ldots$ around z = 0, so $f'(z) = \frac{-cd}{z^{d+1}} + \ldots$ Computing the divisor we have

 $\operatorname{div}(f') = [p_1] + \dots [p_b] - (d+1)[0].$

As this should have degree 0 we know that (counted with multiplicities) f' has b = d + 1 zeroes, which are the ramification points of f. However, as the genus of \mathbb{C}/Λ is 1 and the genus of \mathbb{CP}^1 is 0, Riemann-Hurwitz tells us that 2 - 2 = d(-2) + b, so we expect a total of b = 2d ramification points. What is wrong in this counter-example?

Solution The equation f'(z) = 0 tells us all ramification points that do not map to ∞ . However, ∞ is actually a branch point of f as $f^{-1}(\infty) = d[0]$ and the ramification index is d-1, so the total ramification index is indeed d+1+(d-1)=2d.

3. In this exercise we want to recall the notion of a holomorphic differential form. Let C be a complex manifold of dimension 1 and let $(\varphi_i : U_i \xrightarrow{\sim} W_i \subset C)_{i \in I}$ be an atlas of C. Recall that this means that for $i, j \in I$ the function

$$\psi_{ji} = \varphi_j^{-1} \circ \varphi_i : U_{ij} = \varphi_i^{-1}(W_i \cap W_j) \to \varphi_j^{-1}(W_i \cap W_j) = U_{ji}$$

is a biholomorphic map. Now a differential form ω on C is given by a collection $(\omega_i = f_i(z)dz)_{i\in I}$ of differential forms $f_i(z)dz$ on U_i which are compatible. This compatibility means exactly that $\psi_{ii}^*\omega_j = \omega_i|_{U_{ij}}$. Here the pullback is defined by

$$\psi_{ji}^* \omega_j = \psi_{ji}^* (f_j(z) dz) = f_j(\psi_{ji}(z)) d\psi_{ji}(z) = f_j(\psi_{ji}(z)) \frac{d\psi_{ji}}{dz} dz.$$

Denote the \mathbb{C} -vector space of holomorphic differential forms on C by $H^0(C, \Omega_C)$.

i) The curve $C = \mathbb{CP}^1$ is covered by two charts

$$\varphi_1: U_1 = \mathbb{C} \to \mathbb{CP}^1, z \mapsto [1:z],$$
$$\varphi_2: U_2 = \mathbb{C} \to \mathbb{CP}^1, w \mapsto [w:1].$$

Use the definition above to show that $H^0(C, \Omega_C) = 0$.

- ii) Given a holomorphic map $g: C \to C'$ of complex manifolds of dimension 1, describe how to define the pullback $g^*\omega$ of a holomorphic differential form ω on C' to C.
- iii) Use part ii) to show that for $C = \mathbb{C}/\Lambda$ an elliptic curve ($\Lambda \subset \mathbb{C}$ a lattice), the space $H^0(C, \Omega_C)$ has dimension 1.
- iv)* The definition of holomorphic differential forms (and their pullback) generalizes to higher dimensional complex manifolds. Show that for a lattice Λ inside \mathbb{C}^g , the complex manifold $T = \mathbb{C}^g / \Lambda$ has a g-dimensional space of holomorphic differentials and identify a basis of this space. Use this basis together with parts i) and ii) to show that any holomorphic map $\sigma : \mathbb{CP}^1 \to T$ is constant.

Solution

i) Let $\omega_1 = f(z)dz$ and $\omega_2 = g(w)dw$. The base change map $\psi_{21} : U_1 \supset \mathbb{C}^* \rightarrow \mathbb{C}^* \subset U_2$ is given by $\psi_{21}(z) = 1/z$. Indeed we have

$$\psi_{21} = \varphi_2^{-1}(\varphi_1(z)) = \varphi_2^{-1}([1:z]) = \varphi_2^{-1}([1/z:1]) = 1/z.$$

Then the condition on the differentials ω_1, ω_2 is

$$f(z)dz = \omega_1 = \psi_{21}^* \omega_2 = g(\psi_{21}(z))d\psi_{21}(z) = g(1/z)\frac{-dz}{z^2}.$$

Now f and g are holomorphic functions on all of \mathbb{C} , so they are described entirely by their power series expansion around zero. But then looking at the equation $f(z) = -g(1/z)/z^2$ we see that only f = g = 0 are a solution, as the left hand side is holomorphic at z = 0 and the right is not unless g = 0. Thus $\omega_1 = 0, \omega_2 = 0$, so every holomorphic differential vanishes on \mathbb{CP}^1 .

- ii) Let $g: C \to C'$ be holomorphic, let ω be a holomorphic differential on C', let $\varphi': U' \to W' \subset C'$ be a holomorphic chart such that ω is given on U' by f(z)dz. Let $\varphi: U \to W \subset C$ be a chart of C such that $g(W) \subset W'$, then as g is holomorphic, we have that the composition $(\varphi')^{-1} \circ g \circ \varphi: U \to U'$ is holomorphic. Then the differential $g^*\omega$ on C is given in the chart φ by $((\varphi')^{-1} \circ g \circ \varphi)^* f(z)dz$. As C is covered by such charts φ (as the charts φ' cover C'), this uniquely describes $g^*\omega$. One shows that the differential forms on the various charts U are compatible by using the complex chain rule.
- iii) We have a holomorphic map $g : \mathbb{C} \to C = \mathbb{C}/\Lambda$ given by the quotient map. If ω is a differential on C, its pullback $g^*\omega$ is a differential on \mathbb{C} , so it is of the form $g^*\omega = f(z)dz$ for f a holomorphic function on \mathbb{C} . Now as

g is invariant under translation on the source by elements of Λ , the form $g^*\omega$ (and thus f) is doubly periodic. But a holomorphic doubly periodic function f is constant, so $g^*\omega = c \cdot dz$ for some $c \in \mathbb{C}$. By restricting g to small subsets of \mathbb{C} we obtain an atlas of C, so indeed the differential form ω is just given by $c \cdot dz$ in all such charts. Hence the map

$$\mathbb{C} \to H^0(C, \Omega_C), c \mapsto c \cdot dz$$

is an isomorphism.

iv)* Repeating the argument from iii) with the map $h : \mathbb{C}^g \to \mathbb{C}^g/\Lambda$ we see that the pullback $h^*\omega$ of a holomorphic differential ω on \mathbb{C}^g/Λ is given by $f_1(z)dz_1 + \ldots + f_g(z)dz_g$. All functions f_i are invariant under shifts by Λ , so as \mathbb{C}^g/Λ is compact, by the maximum principle they are constant. Thus the space of differential forms is given by $\omega = c_1dz_1 + \ldots + c_gdz_g$ for $(c_1, \ldots, c_g) \in \mathbb{C}^g$, so g-dimensional.

Assume $\sigma : \mathbb{CP}^1 \to T$ is holomorphic with $p \in \mathbb{CP}^1$ mapping to the image of some chart $\varphi : \mathbb{C}^g \supset U \to \mathbb{C}^g/\lambda$, given by a restriction of the quotient map h. Then around p, the function $\varphi^{-1} \circ f$ is given by its coordinate functions $(\sigma_1(z), \ldots, \sigma_g(z))$. For each $i = 1, \ldots, g$ the differential form dz_i on T pulls back to the zero form on \mathbb{CP}^1 , as all holomorphic differentials on \mathbb{CP}^1 vanish! Writing this explicitly we have

$$0 = \sigma^* dz_i = d(z_i \circ \sigma) = d\sigma_i = \frac{d\sigma_i}{dz} dz.$$

Thus the derivative of σ_i is zero, so σ_i is constant for all *i*. Hence σ is constant as claimed above.

Due March 16.

Exercises with * are possibly harder and should be considered as optional challenges.