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Exercise Sheet 4 - Solutions

1. Consider the cover Ui = {[Z0 : . . . : Zn] : Zi 6= 0} of projective space Pn with
coordinates

Z0

Zi
, . . . ,

Zi−1

Zi
,
Zi+1

Zi
, . . . ,

Zn
Zi

on Ui ∼= Cn. With respect to this cover, the line bundle O(1) has the transition
functions φij = Zj/Zi on Ui ∩ Uj. Here we mean that functions si on Ui are
compatible (and define a section s of O(1)) if si = φijsj.

a) The line bundle O(d), d ∈ Z, is defined as O(1)⊗d for d ≥ 1 and (O(1)∗)⊗−d

for d < 0, where O(1)∗ is the dual bundle. What are its transition functi-
ons?

b) Show that H0(Pn,O(d)) = 0 for d < 0.

c) Show that H0(Pn,O(d)) is isomorphic to the space of homogeneous poly-
nomials in Z0, . . . , Zn of degree d. This has dimension

(
n+d
n

)
.

d)* The tautological line bundle L on Pn was defined as

π : L = {(v, l) ∈ Cn+1 × Pn : v ∈ l} → Pn, (v, l) 7→ l.

Show that L ∼= O(−1).

Solution

a) For L,L′ line bundles defined by transition functions φij, φ
′
ij with respect

to some cover, their tensor product is defined by φijφ
′
ij and the dual bundle

L∗ is defined by φ−1
ij . This implies that the transition functions of O(d) are

given by ψij = (φij)
d = (Zj/Zi)

d.

b) Assume a section f ∈ H0(Pn,O(d)) is given in the chart Ui by the poly-
nomial

fi ∈ C
[
Z0

Zi
, . . . ,

Zi−1

Zi
,
Zi+1

Zi
, . . . ,

Zn
Zi

]
.

Then to be compatible, we require that fi = (Zj/Zi)
dfj. Note that this

equality is an equality of functions on Ui ∩ Uj and the ring of functions
there is given by

C
[
Z0

Zi
, . . . ,

Zi−1

Zi
,
Zi+1

Zi
, . . . ,

Zn
Zi

] [(
Zj
Zi

)−1
]
.

This means in particular that this must be an equality of Laurent polyno-
mials in Z0, . . . , Zn.



Rewrite the desired equation as fiZ
d
i = Zd

j fj, then as d < 0, we know
that the left hand side has degree at most d < 0 in Zi (remember fi is a
polynomial in terms Zk/Zi) and the right hand side has only nonnegative
powers of Zi appearing. This shows that both sides must be identically
zero, so fi = 0 for all i, i.e. f = 0.

c) The same arguments as in b) lead to the desired equality fiZ
d
i = Zd

j fj. If
fi has terms of degree greater than d in the variables Zk/Zi, the left hand
side has terms of strictly negative degree in Zi and we have a contradiction
as before. Conversely, if f is a polynomial of degree at most d, the term Zd

i

cancels all denominators on the left and fj = fi(Zi/Zj)
d is a well defined

polynomial in the variables Zk/Zd. One checks that for any such fi the
functions f1, . . . , fi−1, fi+1, . . . , fn defined by this formula are compatible
and thus give a section f of O(d). The homogeneous polynomial of degree
d in Z0, . . . , Zd associated to f is exactly fiZ

d
i .

By elementary enumerative combinatorics, the set of monomials in Z0, . . . , Zn
of degree d has cardinality

(
n+d
n

)
.

d)* We saw in the class that the line bundle L is trivial on the open cover
U0, . . . , Un of Pn and on Ui for a regular function

si(
Z0

Zi
, . . . ,

Zi−1

Zi
,
Zi+1

Zi
, . . . ,

Zn
Zi

)

we obtain the section

Ui → π−1(Ui), P = [
Z0

Zi
, . . . , 1, . . . ,

Zn
Zi

] 7→
(

(si
Z0

Zi
, si

Z1

Zi
, . . . , si, . . . , si

Zn
Zi

), P

)
.

We have a similar expression for sj. Then si, sj define compatible sections
iff

(si
Z0

Zi
, si

Z1

Zi
, . . . , si, . . . , si

Zn
Zi

) = (sj
Z0

Zj
, sj

Z1

Zj
, . . . , sj, . . . , sj

Zn
Zj

). (1)

Comparing the first coordinates, we see that necessarily siZ0/Zi = sjZ0/Zj
or in other words si = (Zi/Zj)sj. Conversely, one checks that under this
assumption all other components in (1) agree as well. Thus the transiti-
on functions for L are φ′ij = Zi/Zj = φ−1

ij , where φij are the transition
functions of O(1) from above. Thus we see L = O(1)∗ = O(−1).

2. a) Let C be a curve of genus 0. Show that C is isomorphic to P1. (Hint : To
specify an isomorphism C → P1 you have to give a meromorphic function
on C.)

b) For the point [1 : 0] ∈ P1, show that the line bundles O([1 : 0]) and O(1)
are isomorphic by looking at their transition functions for the usual cover
U0, U1. Conclude that c1(O(n)) = n.

c) Show that Pic(P1) ∼= Z with generator O(1) corresponding to 1 ∈ Z.
Conclude that given any points p1, . . . , pr ∈ P1 and a1, . . . , ar ∈ Z one has
O(a1p1 + . . .+ arpr) ∼= O(a1 + . . .+ ar).



Solution For the entire exercise it will be useful to recall the exact sequence
involving the Jacobian in genus g = 0. Here the Jacobian is given by Jac(C) =
C0/H1(C,Z) = {0}, so the sequence reads

0→ C∗ → K(C)∗
div−→ Div0(C)→ 0.

On the other hand we saw that the Jacobian is the degree 0 part of the Picard
group, i.e. the kernel of the degree map c1 : Pic(C) → Z. As the Jacobian is
trivial, this map is injective (and trivially surjective), hence an isomorphism.

a) Let p, q ∈ C be two distinct points, then p − q ∈ Div0(C). By the exact
sequence above there exists a meromorphic function f on C with div(f) =
p − q. This function defines a morphism f : C → P1 and the preimage of
0 ∈ P1 is exactly p (with multiplicity 1). Thus f has degree 1, so every point
in P1 has exactly one preimage point. This implies that f is a bijection.

To be super-precise, we still need to show that the inverse of f is al-
so smooth/algebraic. In the algebraic world, it is true in general that a
morphism of smooth, irreducible varieties over C which is bijective is au-
tomatically an isomorphism. In the analytic world, we can use that if the
differential of f at any point p vanishes, the preimage of q = f(p) contains
p with multiplicity at least 2, a contradiction to the claim that the degree
of f is 1. Hence the differential vanishes nowhere, so by the inverse function
theorem, the inverse of f is differentiable everywhere.

b) Choose coordinates z = Z1/Z0 on U0 and w = Z0/Z1 on U1 such that
z = 1/w and such that the point [1 : 0] ∈ U0 is given by {z = 0}. By
definition, the sections of O([1 : 0]) on U0 are the meromorphic functions
f(z) having at most a simple pole at [1 : 0], i.e. of the form f(z) = s0(z)/z
for s0(z) holomorphic. On the other hand the sections of O([1 : 0]) on U1

(which does not contain [1 : 0]) are simply all the holomorphic functions
s1(w). Thus s0 and s1 define compatible sections if s0(z)/z = s1(w), that
is s0 = zs1 = Z1/Z0s1. Comparing with the first exercise, these are the
transition functions φ01 of O(1). We conclude that c1(O(n)) = c1(O(n[1 :
0])) = nc1(O([1 : 0])) = n.

c) In the introduction we have seen that c1 : Pic(C) → Z is an isomorphism
and it sends O(1) to the generator 1 of Z, so O(1) generates Pic(C).

On the other hand c1(O(a1p1 + . . . + arpr)) = a1 + . . . + ar, so O(a1p1 +
. . .+ arpr) ∼= O(a1 + . . .+ ar) by the injectivity of c1.

3. Let C be a smooth curve and L a line bundle on C.

a) Show that L is isomorphic to the trivial line bundle O iff it has a section
s ∈ H0(C,L) which vanishes nowhere.

b) For a nonzero meromorphic section s of L (i.e. a section of L on a set
U = C \ {p1, . . . , pn}) make sure you understand what is meant by its
divisor D = div(s) ∈ Div(C). For a second line bundle L′ with nonzero
meromorphic section s′, we have a meromorphic section s ⊗ s′ of L ⊗
L′. Show that div(s ⊗ s′) = div(s) + div(s′). Show also that a nonzero



meromorphic section s with div(s) ≥ 0 (in the sense that all coefficients
which appear are nonnegative) extends to a global section on all of C.

c) Show that for a divisor D =
∑

i aipi on C the line bundle O(D) has a mero-
morphic section sD with div(sD) = D. (Hint : Under identifying O(D)(U)
with meromorphic functions on U with zeroes and poles restricted by D,
the section sD corresponds to the function 1.)

d) For a nonzero meromorphic section s of L as in b) with D = div(s), show
that L = O(D). (Hint : Show that L⊗O(−D) is trivial by giving a global
section that vanishes nowhere.)

e) For c1(L) < 0 show that H0(C,L) = 0.

Solution

a) One easily checks that the map C × C → L, (p, λ) 7→ λs(p) is an isomor-
phism of line bundles, where C × C→ C is the trivial line bundle. It is a
worthwile exercise to translate this proof in the other descriptions of line
bundles from the lecture.

b) Given a cover U1, . . . , Ur of C trivializing π : L → C, a meromorphic
section s corresponds to meromorphic functions si on the sets Ui via the
chosen isomorphisms π−1(Ui) ∼= Ui×C. Then we can compute the divisor of
the function si, giving a linear combination of points in Ui. As si = φijsj
with φij having neither zeroes nor poles on Ui ∩ Uj, one sees that the
coefficient cp of p ∈ Ui ∩ Uj in div(si) is the same as the coefficient in
div(sj). In other words, it is irrelevant if we compute cp using the chart Ui
or using Uj. Thus we get a well-defined divisor

div(s) =
∑
p∈C

cpp.

For another line bundle L′ and a cover U1, . . . , Ur trivializing both line
bundles, the section s⊗s′ is given in the chart Ui by si ·s′i and div(si ·s′i) =
div(si) + div(s′i). Note that in this last equality the symbol div means
the divisor of a meromorphic function! This equation shows the desired
equality div(s⊗ s′) = div(s) + div(s′).

If div(s) ≥ 0, this means that all the meromorphic functions si on Ui
satisfy div(si) ≥ 0, so they do not have poles anywhere. But a meromorphic
function without poles on Ui actually extends uniquely to a holomorphic
function on all of Ui. These extensions then define the extension of s to all
of C.

c) For D =
∑

i aipi let P+ = {pi : ai ≥ 0} and P− = {pi : ai < 0}. Then the
function 1 on C is a meromorphic function and on U = C \ P− it satisfies

(div(1) +D)|U = (0 +
∑
i

aipi)|U =
∑

i:pi /∈P−

aipi ≥ 0,

so 1 defines a section of O(D) on U by definition. Here we just used that
when restricting to U by definition all the points pi with ai < 0 are remo-



ved, so the remaining part of the divisor D has only nonnegative coeffi-
cients. So 1 is a meromorphic section sD of O(D) and we claim that it has
the desired property div(sD) = D.

Indeed, let q ∈ C be any point and ∆ ⊂ C a small disc around C with
local coordinate z such that q = {z = 0}. If q = pi for some i, choose the
disc ∆ small enough such that no other pj, j 6= i is contained in ∆. Then
O(D) is trivial when restricted to ∆ and we can write

O(D)|∆ =

{
O∆ · 1 , if q 6= pi for all i,

O∆ · z−ai , if q = pi.

Indeed, let for instance ai = 1, then sections of O(D) around pi are me-
romorphic functions with at most a simple pole at pi, so they are of the
form h(z) · z−1 for some holomorphic function h.

But now the section sD corresponds to the meromorphic function 1, and
restricted to ∆, we have 1 = 1 · 1 if q is not one of the pi, so the section sD
corresponds to the function 1 on ∆. But the divisor of this meromorphic
function is trivial, so by the definition above, the coefficient of q in div(sD)
is zero.

On the other hand, if q = pi we have 1 = zai · z−ai , so the section sD
corresponds to the function zai on ∆. This has divisor aiq = aipi (remember
q corresponds to z = 0), so the coefficient of pi in div(sD) is ai as desired.

d) First we remark that L ⊗ O(−D) = O implies (by tensoring with O(D)
that L = L ⊗ O(−D) ⊗ O(D) = O(D) as desired. Now on the one hand
we have a meromorphic section s of L with div(s) = D. On the other
hand by part c) the line bundle O(−D) has a meromorphic section s−D
with div(s−D) = −D. Thus we get a meromorphic section s ⊗ s−D of
L ⊗O(−D) and by part b) we have

div(s⊗ s−D) = div(s) + div(s−D) = D + (−D) = 0.

As the zero-divisor is ≥ 0, by b) the section s ⊗ s−D extends to a global
section of L ⊗ O(−D) on all of C. But its divisor is trivial, so it has no
zeroes anywhere. Then by part a) we know that L⊗O(−D) is the trivial
line bundle as desired.

e) Any nonzero section s ∈ H0(C,L) satisfies that div(s) =
∑

i aipi ≥ 0, as it
has no poles anywhere. On the other hand L = O(div(s)) by part d) and
we see

c1(L) = c1(O(div(s)) = c1(O(
∑
i

aipi)) =
∑
i

ai ≥ 0,

a contradiction to the assumption c1(L) < 0. Thus L has no nonzero
sections s, finishing the proof.

4. Let Λ = 〈v, w〉 ⊂ C be a lattice, then the elliptic curve E = C/Λ has ω = dz
as a basis of H1(E,Ω1) and the cycles a : [0, 1] → E, t 7→ tv and b : [0, 1] →
E, t 7→ tw as a basis of H1(E,Z). With respect to these choices show that



Jac(E) = C/H1(E,Z) is canonically isomorphic to E and compute the Abel-
Jacobi map

AJ : Div0(E)→ Jac(E).

Solution Recall that H1(E,Z) embeds in C by a 7→
∫
a
ω and b 7→

∫
b
ω. Using

the choices of ω, a, b above, we see

a 7→
∫
a

dz = a(1)− a(0) = v, b 7→
∫
b

dz = b(1)− b(0) = w,

so the image of H1(E,Z) = Za+Zb in C is Zv+Zw = Λ, so Jac(E) = C/Λ = E
canonically.

Concerning the Abel-Jacobi map, let D =
∑

i ai[zi] be a divisor of degree 0,
so
∑

i ai = 0. Then by substracting 0 =
∑

i ai[0] we can write it as D =∑
i ai([zi]− [0]). To compute AJ(D) we need to find a union of paths in C with

boundary D and we can choose the union over i of ai copies of the path γi given
by t 7→ tzi, which has as boundary γi(1)− γi(0) = [zi]− [0]. Then we compute

AJ(D) =
∑
i

ai

∫
γi

ω =
∑
i

ai(zi − 0) =
∑
i

aizi ∈ C/Λ.

Thus we obtain AJ(D) by summing the points in D (according to their coeffi-
cients) using the group law of the elliptic curve.

5. In the lecture you saw that morphisms f : X → Pn correspond bijectively to
the data of a line bundle L on X together with sections s0, . . . , sn of L not
vanishing simultaneously. For the following maps f give the corresponding line
bundle L and describe the sections si. (Note: Sometimes it is not easy to describe
the sections si explicitly, but (except when indicated) you can describe div(si),
which determines si up to scaling.)

a) f : P1 → P3, [s : t] 7→ [s3 : s2t : st2 : t3]

b) f : C → P1 interpreted as a meromorphic function f on C

c) ℘ : C/Λ→ P1 the Weierstrass ℘-function

℘(z) =
1

z2
+

∑
w∈Λ\{0}

[
1

(z − w)2
− 1

w2

]
for z ∈ C \ Λ.

Note: Giving s1 here explicitly in terms of the lattice Λ is quite non-trivial
and not part of this exercise!

d) ℘′ : C/Λ→ P1

e) f : C/Λ → P2, z 7→ [℘(z) : ℘′(z) : 1] for z 6= 0 (Remark : As we have seen
on Sheet 1, f extends to a function on all of C/Λ.)

f)* f : P1 × P1 → P3, ([s : t], [u : v]) 7→ [su : sv : tu : tv]

Solution A common strategy for the computing the line bundle for a map
f : X → Pn is to compute the inverse image of the loci {[Z0 : . . . : Zn] : Zi =
0} ⊂ Pn, with multiplicity. If one of these is a nice divisor D, the line bundle
on X is given by O(D).



a) The inverse image of the locus {Z0 = 0} is given by 3[0 : 1], so we have
L = O(3[0 : 1]) = O(3) and indeed, the components of f are homogeneous
polynomials s3, s2t, st2, t3 of degree 3 in the coordinates s, t, which are
sections of O(3) by Exercise 1.

b) Seeing f as a meromorphic function, we can write div(f) =
∑

i aipi −∑
j bjqj with ai, bj > 0. Then L = O(

∑
i aipi) = O(

∑
j bjqj) and for the

sections s0, s1 we can take the meromorphic functions s0 = 1, s1 = f , which
are both global sections of O(

∑
j bjqj). This just corresponds to the fact

that we see a meromorphic function f as a morphism C → P1, p 7→ [1 :
f(p)].

c) The preimage of infinity, i.e. [0 : 1] under ℘ is 2[0], so L = O(2[0]). We can
take for s0 the section of L with div(s0) = 2[0] which exists by Exercise 3
c). However, to give s1 we would need to find the zeroes of the Weierstrass
function. All we can say easily is that because c1(L) = 2, it must be two
zeroes z1, z2 (with multiplicity). If you are interested in this, you can look
at the paper by Duke and Imamoglu linked on the course website.

d) The function ℘′ has a triple pole at 0, so L = O(3[0]). Thus s0 satisfies
div(s0) = 3[0]. We have also found the zeroes of ℘′ on a previous exercise
sheet: if Λ = 〈v, w〉 we have

div(s1) = [v/2] + [w/2] + [(v + w)/2].

e) Recall that f extends by f(0) = [0 : 1 : 0], so when we compute the preima-
ge of the locus {Z1 = 0}, the point 0 does not appear in this preimage and
we can use the formula for f given above. But then this preimage is just
the locus where ℘′(z) = 0 so as seen in the previous exercise part, we have
L = O(3[0]) and the section s1 with div(s1) = [v/2] + [w/2] + [(v +w)/2].
On the other hand, in the preimage of {Z0 = 0} we have the two zero-
es z1, z2 of ℘(z) from part c) and also the point 0, with multiplicity 1, so
div(s0) = [z1]+[z2]+[0]. Finally, the only preimage of {Z2 = 0} is at 0 and
the multiplicity must be 3 as deg(f) = deg(div(s0)) = 3, so div(s2) = 3[0].

f)* We have two projections π1, π2 : P1 × P1 → P1 onto the two different
factors of P1 × P1. Then we note that s defines a section of O(1) on the
first P1 factor (with coordinates s, t), so π∗1(s) is a section of π∗1(O(1)).
On the other hand, on P1 with coordinates u, v we have the section u
of O(1), so π∗2(u) is a section of π∗2(O(1)). Combining these, we have a
section s0 = π∗1(s) ⊗ π∗2(u) of L = π∗1O(1) ⊗ π∗2O(1). Similarly, we have
s1 = π∗1(s)⊗ π∗2(v) and so on and one checks that these actually define the
map f .

The line bundle L is sometimes denoted by O(1, 1). Similarly, one writes
O(a, b) = π∗1O(a)⊗ π∗2O(b).

Due May 9.

Exercises with * are possibly harder and should be considered as optional challenges.


