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Exercise Sheet 5 - Solutions

1. Let W be a C-vector space of finite dimension m ≥ 2 and let V ⊂ W be a
vector subspace of dimension n ≥ 1.

i) Convince yourself that for the inclusion P(V ) ⊂ P(W ) the set of linear
projective planes Pn ⊂ P(W ) of dimension n containing P(V ) is isomorphic
to P(W/V ) in a canonical way. Show that the map sending a point [w] ∈
P(W ) \ P(V ) to the unique linear Pn ⊂ P(W ) containing [w] and P(V )
is given by the map P(W ) \ P(V ) → P(W/V ) induced by the projection
W → W/V . This map is called the projection from P(V ).

ii) Work out the projection from P(V ) = {x0 = x1 = . . . = xm−1−n = 0} ⊂
Pm−1 = P(W ) in coordinates.

Solution

i) A linear projective plane of dimension n containing P(V ) corresponds to
a linear subspace V ′ ⊂ W of dimension n + 1 containing V . Under the
linear projection W → W/V the space V ′ maps to a line in W/V through
the origin. Conversely, given a linear subspace of dimension 1 in W/V , its
preimage in W is of dimension n+1 containing V . This gives the canonical
bijection, inducing the map P(W ) \ P(V )→ P(W/V ) described above.

ii) For W = Cm and V = {0}m−n × Cn, the projection W → W/V ∼= Cm−n

can be described as the projection on the first m−n coordinates. Thus we
have

P(W ) \ P(V )→ P(W/V ) ∼= Pm−1−n, [x0 : . . . : xm−1] 7→ [x0 : . . . : xm−1−n].

2. Let C be a smooth projective curve of genus g.

i) Show that a line bundle L of degree 0 on C has h0(C,L) = 0 or 1 and L is
equal to the trivial bundle iff it has h0(C,L) = 1. Hint: Sheet 4, Exercise
3 a).

ii) Show that a line bundle L of degree 2g − 2 on C is equal to the canonical
bundle iff it has h0(C,L) ≥ g (and in this case of course h0(C,L) = g).

iii) Let g ≥ 1 and p ∈ C. Consider the exact sequence

0→ O → O(p)→ O(p)|p → 0. (1)

Here the map O → O(p) sends a function f to the section f · sp, where
sp ∈ H0(C,O(p)) is a section with div(sp) = [p] like in Sheet 4, Exercise 3
d). The map O(p)→ O(p)|p is given by evaluating sections at the point p.



a) Recall that you showed in class that the sections s0, . . . , sg−1 genera-
ting H0(C, ωC) have no common zero. Conclude that h0(C, ωC(−p)) =
g − 1.

b) Look at the long exact sequence induced by (1) and the dimensions
of the terms appearing in it. Show that the map H0(C,O(p)|p) →
H1(C,O) appearing in the sequence does not vanish. Conclude that
h0(C,O(p)) = 1. (Note: We did not have to use that C is not hyperel-
liptic!)

c) Show that (still for g ≥ 1) and p, q ∈ C we have O(p) = O(q) iff p = q.

Solution

i) We first show that a degree 0 line bundle L is trivial iff it has at least
one section, then we show that it can never have more than one linearly
independent section. Clearly the trivial line bundle has a nonzero section.
Conversely, if s is a nonzero section of a degree 0 line bundle L then
div(s) =

∑
i ai[pi] with all ai ≥ 0 since s has no poles but also 0 = degL =∑

i ai, so all ai = 0. Thus s vanishes nowhere. By Sheet 4, Exercise 3 a)
the line bundle L is thus trivial. Now if L had two linearly independent
sections s1, s2, fix a point p ∈ C and find some nonzero linear combination
s = λs1 + µs2 of them vanishing at p (the linear map C2 → Lp

∼= C to the
fibre Lp of L at p given by (λ, µ) 7→ λs1(p) +µs2(p) has nontrivial kernel).
But now s is a holomorphic section of the degree 0 line bundle L with at
least one zero. By the argument before, this gives a contradiction.

ii) We have L ∼= ωC iff ωC ⊗ L∨ is the trivial line bundle. By part i) this
is the case iff h0(C, ωC ⊗ L∨) ≥ 1. By Serre duality this is the same as
h1(C,L) ≥ 1 and by Riemann-Roch, this is equivalent to

h0(C,L) = degL − g + 1 + h1(C,L) ≥ 2g − 2− g + 1 + 1 = g.

iii) a) The spaceH0(C, ωC(−p)) is the kernel of the evaluation mapH0(C, ωC)→
(ωC)p ∼= C at p. The fact from class shows that this evaluation map
is surjective, hence its kernel has codimension 1 in the g-dimensional
space H0(C, ωC).

b) The long exact sequence (with dimensions indicated) is as follows

0→ H0(O)︸ ︷︷ ︸
1

→ H0(O(p))︸ ︷︷ ︸
?

→ H0(O(p)|p)︸ ︷︷ ︸
1

→ H1(O)︸ ︷︷ ︸
h0(ωC)=g

→ H1(O(p))︸ ︷︷ ︸
h0(ωC(−p))=g−1

→ 0

where we used Serre duality and part a) for the last two terms.
Now the map H1(O) → H1(O(p)) has kernel of dimension exactly 1,
so the map H0(O(p)|p) → H1(O) must be nonzero, hence injective.
This implies that H0(O(p)) → H0(O(p)|p) is the zero-map. But then
H0(O(p)) ∼= H0(O) is one-dimensional, as claimed.

c) If O(p) = O(q) with p 6= q, then by Exercise 3, Sheet 4 the line bundle
O(p) has sections sp, sq with div(sp) = [p], div(sq) = [q]. Clearly sp, sq
must be linearly independent, so h0(C,O(p)) ≥ 2, a contradiction.



3. Let C be a smooth projective curve of genus g and let L be a line bundle on
C. Let s0, . . . , sr be a basis of H0(C,L). Remember the following equivalences
from the lecture: The data (C,L, s0, . . . , sr) gives

• a map ϕ : C → Pr iff the morphism H0(C,L) → H0(C,L|p) ∼= C is
surjective for all p ∈ C.

• a map ϕ : C → Pr separating points iff the morphism H0(C,L) →
H0(C,L|p+q) ∼= C2 is surjective for all p, q ∈ C with p 6= q.

• an embedding ϕ : C → Pr iff the morphism H0(C,L) → H0(C,L|p+q) is
surjective for all p, q ∈ C.

Here a map ϕ separates points iff ϕ is injective and it is an embedding iff its
differential is nowhere zero, i.e. the map ϕ∗ : TpC → Tϕ(p)Pr.

i) Give a proof of the first two criteria and use long exact sequences in
cohomology to reformulate all three criteria in terms of the quantities
h0(C,L)− h0(C,L(−p)) and h0(C,L)− h0(C,L(−p− q)).

ii)* Give a proof of the third criterion. Hint: The map ϕ∗ : TpC → Tϕ(p)Pr

is nonzero iff there is a function f around ϕ(p) vanishing to order 1 at
ϕ(p) such that f ◦ ϕ also vanishes to order exactly 1 at p. Now in the
series of inclusions H0(C,L(−2p)) ⊂ H0(C,L(−p)) ⊂ H0(C,L), where
are the sections s of L vanishing exactly to order 1 at p? You might want
to show and use the general fact that for any line bundle L′ we have
h0(C,L′) − h0(C,L′(−p)) = 0 or 1, i.e. h0 can change by at most 1 when
twisting by a point.

iii) Use Serre duality to show that any line bundle L′ with degL′ > 2g − 2
satisfies h1(C,L′) = 0. What is h0(C,L′) in this case?

iv) Conclude that for degL ≥ 2g the line bundle L gives a map to projective
space and for degL ≥ 2g + 1 this map is an embedding.

Solution

i) A linear map to C is surjective iff it is nonzero, so the first criterion asks
that for every point p there should be a section s ∈ H0(C,L) with s(p) 6= 0.
This is equivalent to asking that not all basis elements si vanish simulta-
neously at p and this in turn was equivalent to (C,L, s0, . . . , sr) defining a
map.

For the second criterion, assume first that ϕ separates points and let p, q ∈
C be distinct. Then ϕ(p), ϕ(q) are also distinct. Let Lp,Lq

∼= C be the fibres
of L at p, q, then we need to show that the evaluation map H0(C,L) →
Lp⊕Lq is surjective. This is equivalent to finding sections sp, sq ∈ H0(C,L)
such that sp(p) 6= 0, sp(q) = 0 and sq(p) = 0, sq(q) 6= 0. But since ϕ(p), ϕ(q)
are distinct points in Pr, we can find linear forms tp = a0x0+a1x1+. . .+arxr
and tq = b0x0 + . . . such that tp vanishes at q but not at p and tq vanishes
at p but not q. Now we can see tp, tq as sections of O(1) and we define
sp = ϕ∗tp, sq = ϕ∗tq. These sections satisfy the required conditions. This
shows the second criterion.



The converse direction works similarly, where we use the fact that the pull-
back map ϕ∗ : H0(Pr,O(1)) → H0(C,L = ϕ∗(O(1))) is an isomorphism.
Indeed, the basis x0, . . . , xr on the left is pulled back exactly to the basis
s0, . . . , sr on the right by definition of ϕ.

Now looking at the long exact sequence in cohomology for

0→ L(−p)→ L → L|p → 0

we obtain

0→ H0(C,L(−p))→ H0(C,L)→ Lp
∼= C→ · · · .

By linear algebra, the map on the right is surjective iff its kernel, given by
H0(C,L(−p)), has codimension 1 in H0(C,L), in other words h0(C,L) −
h0(C,L(−p)) = 1. A similar argument using the exact sequence

0→ L(−p− q)→ L → L|p+q → 0

shows that the second and third criteria are equivalent to asking h0(C,L)−
h0(C,L(−p− q)) = 2 for all p 6= q or for all p, q, respectively.

ii)* We first prove the auxilliary fact that h0(C,L′) − h0(C,L′(−p)) = 0 or 1
for any line bundle L′. Indeed, looking at the long exact sequence in the
solution of i), the codimension of H0(C,L(−p)) ⊂ H0(C,L) can either be
0 or 1, depending on whether H0(C,L) → Lp

∼= C is the zero map or
surjective.

Now for the criterion, as described in the hint the map ϕ∗ : TpC → Tϕ(p)Pr

is nonzero iff there is a (linear) function f = a0x0 + . . . + arxr vanishing
at ϕ(p) such that f ◦ ϕ vanishes to order exactly 1 at p. Now we can in-
terpret f as a section of O(1) and then f ◦ ϕ corresponds to the pullback
section ϕ∗f = a0s0 + . . . + arsr. The condition that it vanishes to order
exactly 1 at p is equivalent to this section being in H0(C,L(−p)) but not
H0(C,L(−2p)), so H0(C,L(−2p)) ⊂ H0(C,L(−p)) is a strict inclusion.
Moreover by the first criterion we also know thatH0(C,L(−p)) ⊂ H0(C,L)
is a strict inclusion. Also, by the auxilliary fact both inclusions can ha-
ve codimension at most 1, so they have codimension exactly 1. Thus
h0(C,L) − h0(C,L(−2p)) = 2. By the argument from i) this is equiva-
lent to the map H0(C,L)→ H0(C,L|2p) being surjective.

iii) By Serre duality h1(C,L′) = h0(C, ωC ⊗ (L′)∨). But

degωC ⊗ (L′)∨ = 2g − 2− degL′ < 0,

so this line bundle cannot have any nonzero sections, hence h0(C, ωC ⊗
(L′)∨) = 0. By Riemann-Roch we have

h0(C,L′) = h0(C,L′)− h1(C,L′) = degL′ − g + 1.

iv) The degree condition ensures that we can apply part iii) to the line bundles
L,L(−p) in the first case and L,L(−p−q) in the second and indeed obtain

h0(C,L)− h0(C,L(−p)) = (degL − g + 1)− (degL − 1− g + 1) = 1



and

h0(C,L)− h0(C,L(−p− q)) = (degL − g + 1)− (degL − 2− g + 1) = 2.

By the reformulation in part i) this gives that L defines a map to PdegL−g

in the first case and that this map is an embedding in the second case.

4. Recall that a curve C is hyperelliptic iff it admits a degree two map to P1.

i) Show that every curve of genus 0 is hyperelliptic.

ii) Show that every curve of genus 1 is hyperelliptic.

iii) Show that every curve of genus 2 is hyperelliptic.

iv) Let X be a variety, L a line bundle on X and assume f : X → Pn is given
by sections s0, . . . , sn of L. Show that the following are equivalent:

a) f(X) ⊂ Pn is nondegenerate, i.e. there exists no hyperplane in Pn

containing f(X).

b) The map H0(Pn,O(1)) → H0(X, f ∗(O(1))) = H0(X,L) induced by
pullback via f is injective.

c) The sections s0, . . . , sn are linearly independent.

In these cases, also the map f itself is called nondegenerate.

v) Show that every nondegenerate map f : P1 → Pd of degree d is - after a
linear change of coordinates on Pd - a rational normal curve, i.e. the map
[s : t] 7→ [sd : sd−1t : sd−2t2 : . . . : std−1 : td]. We note that for d ≥ 1 this
map is an isomorphism onto its image. Hint: Show that a linear change of
coordinates simply means that you take corresponding linear combinations
of the sections of a line bundle defining f .

vi) Prove that for a hyperelliptic curve C of genus g ≥ 2 with hyperelliptic map
ϕ : C → P1, the composition f ◦ ϕ : C → Pg−1 of ϕ with a nondegenerate
map f : P1 → Pg−1 of degree g − 1 is (isomorphic to) the canonical map,
i.e. the map induced by the line bundle ωC and its g sections. Hint: First
show that the line bundle L on C inducing the map f ◦ϕ has degree 2g−2,
then use Exercise 2 ii) above.

vii) Conclude that for g(C) ≥ 2 the hyperelliptic map C → P1 is unique up to
change of coordinates on P1.

Solution

i) A curve C of genus 0 is isomorphic to P1 and the map P1 → P1, z 7→ z2 is
of degree 2.

ii) Let E = C/Λ be an elliptic curve, then the Weierstrass function ℘ is a
meromorphic function, i.e. a map ℘ : E → P1. Since the preimage of ∞ is
2[0], the map ℘ is of degree 2. Note that ℘ is exactly invariant under the
involution z 7→ −z on E, which is the hyperelliptic involution.

iii) The line bundle ωC of a genus 2 curve C has degree 2 · 2− 2 = 2 and g = 2
sections, not vanishing simultaneously, so the canonical map C → P1 has
degree 2.



iv) We show the equivalence of the negations of the above statements: f(X) ⊂
Pn is degenerate iff there is a hyperplane containing it. Hyperplanes are cut
out by sections s of O(1), so this is equivalent to the existence of a section
s which pulls back to zero under f , i.e. a nonzero element of the kernel of
H0(Pn,O(1)) → H0(X,L). But this map is simply given by sending the
basis x0, . . . , xn on the left to the sections s0, . . . , sn. Thus this map has
nontrivial kernel iff s0, . . . , sn are linearly dependent.

v) A nondegenerate map f : P1 → Pd of degree d is, by definition, given by a
line bundle L on P1 of degree d together with d+1 sections s0, . . . , sd of L.
Now as we have seen, every line bundle on P1 is of the form O(m), so neces-
sarily L ∼= O(d). By part iv) the sections s0, . . . , sd are linearly independent
sections in H0(P1,O(d)), but this space has dimension d+1, so they form a
basis. Hence, we can express the usual basis elements sd, sd−1t, . . . , std−1, td

of H0(P1,O(d)) as linear combinations of s0, . . . , sd. Then the invertible
(d+ 1)× (d+ 1) matrix defining these linear combinations induces a linear
change of coordinates ψ : Pd → Pd and ψ ◦ f then has exactly the form
[s : t] 7→ [sd : sd−1t : sd−2t2 : . . . : std−1 : td].

vi) The map f ◦ ϕ is given by a line bundle L = (f ◦ ϕ)∗O(1) with sections
s0, . . . , sg−1 satisfying si = (f ◦ ϕ)∗xi. We need to show that L ∼= ωC and
that the si are a basis of H0(C, ωC).

Since f is degree g − 1, it satisfies f ∗O(1) ∼= O(g − 1). Assume that the
hyperelliptic map ϕ is given by a line bundle M (of degree 2), then we
have

L = (f ◦ ϕ)∗O(1) = ϕ∗f ∗O(1) = ϕ∗O(g − 1) = ϕ∗O(1)⊗g−1

= (ϕ∗O(1))⊗g−1 =M⊗g−1.

Since M has degree 2, the line bundle L has degree 2g − 2.

By Exercise 2 ii) we have L ∼= ωC if we can show h0(C,L) ≥ g. But note
that we can obtain sections of L by pullback via f ◦ ϕ and by part iv) we
have that the map H0(Pg−1,O(1)) → H0(C,L) is injective (note that f
is nondegenerate and ϕ is surjective, so f ◦ ϕ(C) is nondegenerate). Since
dimH0(Pg−1,O(1)) = g, we have showed that indeed h0(C,L) ≥ g. Moreo-
ver, again by part iv), the sections s0, . . . , sg−1 are linearly independent,
hence a basis of H0(C, ωC). Thus f ◦ϕ is isomorphic to the canonical map
of C.

vii) We have just seen that for a hyperelliptic curve C of genus g ≥ 2, its ca-
nonical map Ψ : C → Pg−1 factors through any hyperelliptic map C → P1

and an embedding P1 → Pg−1. But this means that the image of Ψ is (ab-
stractly) isomorphic to P1 and hence any hyperelliptic map is isomorphic
to Ψ : C → Ψ(C). But this Ψ is canonical (in both senses of the word) and
does not depend on any choices, so the hyperelliptic map is unique up to
isomorphisms of P1.

Due May 9.



Exercises with * are possibly harder and should be considered as optional challenges.


