Exercise Sheet 5 - Solutions

- **1.** Let W be a C-vector space of finite dimension $m \ge 2$ and let $V \subset W$ be a vector subspace of dimension $n \ge 1$.
 - i) Convince yourself that for the inclusion $\mathbb{P}(V) \subset \mathbb{P}(W)$ the set of linear projective planes $\mathbb{P}^n \subset \mathbb{P}(W)$ of dimension n containing $\mathbb{P}(V)$ is isomorphic to $\mathbb{P}(W/V)$ in a canonical way. Show that the map sending a point $[w] \in$ $\mathbb{P}(W) \setminus \mathbb{P}(V)$ to the unique linear $\mathbb{P}^n \subset \mathbb{P}(W)$ containing [w] and $\mathbb{P}(V)$ is given by the map $\mathbb{P}(W) \setminus \mathbb{P}(V) \to \mathbb{P}(W/V)$ induced by the projection $W \to W/V$. This map is called the *projection from* $\mathbb{P}(V)$.
 - ii) Work out the projection from $\mathbb{P}(V) = \{x_0 = x_1 = \ldots = x_{m-1-n} = 0\} \subset \mathbb{P}^{m-1} = \mathbb{P}(W)$ in coordinates.

Solution

- i) A linear projective plane of dimension n containing $\mathbb{P}(V)$ corresponds to a linear subspace $V' \subset W$ of dimension n + 1 containing V. Under the linear projection $W \to W/V$ the space V' maps to a line in W/V through the origin. Conversely, given a linear subspace of dimension 1 in W/V, its preimage in W is of dimension n+1 containing V. This gives the canonical bijection, inducing the map $\mathbb{P}(W) \setminus \mathbb{P}(V) \to \mathbb{P}(W/V)$ described above.
- ii) For $W = \mathbb{C}^m$ and $V = \{0\}^{m-n} \times \mathbb{C}^n$, the projection $W \to W/V \cong \mathbb{C}^{m-n}$ can be described as the projection on the first m-n coordinates. Thus we have

$$\mathbb{P}(W) \setminus \mathbb{P}(V) \to \mathbb{P}(W/V) \cong \mathbb{P}^{m-1-n}, [x_0 : \ldots : x_{m-1}] \mapsto [x_0 : \ldots : x_{m-1-n}].$$

2. Let C be a smooth projective curve of genus g.

- i) Show that a line bundle \mathcal{L} of degree 0 on C has $h^0(C, \mathcal{L}) = 0$ or 1 and \mathcal{L} is equal to the trivial bundle iff it has $h^0(C, \mathcal{L}) = 1$. *Hint:* Sheet 4, Exercise 3 a).
- ii) Show that a line bundle \mathcal{L} of degree 2g 2 on C is equal to the canonical bundle iff it has $h^0(C, \mathcal{L}) \ge g$ (and in this case of course $h^0(C, \mathcal{L}) = g$).
- iii) Let $g \ge 1$ and $p \in C$. Consider the exact sequence

$$0 \to \mathcal{O} \to \mathcal{O}(p) \to \mathcal{O}(p)|_p \to 0.$$
(1)

Here the map $\mathcal{O} \to \mathcal{O}(p)$ sends a function f to the section $f \cdot s_p$, where $s_p \in H^0(C, \mathcal{O}(p))$ is a section with $\operatorname{div}(s_p) = [p]$ like in Sheet 4, Exercise 3 d). The map $\mathcal{O}(p) \to \mathcal{O}(p)|_p$ is given by evaluating sections at the point p.

- a) Recall that you showed in class that the sections s_0, \ldots, s_{g-1} generating $H^0(C, \omega_C)$ have no common zero. Conclude that $h^0(C, \omega_C(-p)) = g 1$.
- b) Look at the long exact sequence induced by (1) and the dimensions of the terms appearing in it. Show that the map $H^0(C, \mathcal{O}(p)|_p) \rightarrow$ $H^1(C, \mathcal{O})$ appearing in the sequence does not vanish. Conclude that $h^0(C, \mathcal{O}(p)) = 1$. (*Note:* We did not have to use that C is not hyperelliptic!)
- c) Show that (still for $g \ge 1$) and $p, q \in C$ we have $\mathcal{O}(p) = \mathcal{O}(q)$ iff p = q.

Solution

- i) We first show that a degree 0 line bundle \mathcal{L} is trivial iff it has at least one section, then we show that it can never have more than one linearly independent section. Clearly the trivial line bundle has a nonzero section. Conversely, if s is a nonzero section of a degree 0 line bundle \mathcal{L} then $\operatorname{div}(s) = \sum_i a_i[p_i]$ with all $a_i \geq 0$ since s has no poles but also $0 = \operatorname{deg}\mathcal{L} =$ $\sum_i a_i$, so all $a_i = 0$. Thus s vanishes nowhere. By Sheet 4, Exercise 3 a) the line bundle \mathcal{L} is thus trivial. Now if \mathcal{L} had two linearly independent sections s_1, s_2 , fix a point $p \in C$ and find some nonzero linear combination $s = \lambda s_1 + \mu s_2$ of them vanishing at p (the linear map $\mathbb{C}^2 \to \mathcal{L}_p \cong \mathbb{C}$ to the fibre \mathcal{L}_p of \mathcal{L} at p given by $(\lambda, \mu) \mapsto \lambda s_1(p) + \mu s_2(p)$ has nontrivial kernel). But now s is a holomorphic section of the degree 0 line bundle \mathcal{L} with at least one zero. By the argument before, this gives a contradiction.
- ii) We have $\mathcal{L} \cong \omega_C$ iff $\omega_C \otimes \mathcal{L}^{\vee}$ is the trivial line bundle. By part i) this is the case iff $h^0(C, \omega_C \otimes \mathcal{L}^{\vee}) \geq 1$. By Serre duality this is the same as $h^1(C, \mathcal{L}) \geq 1$ and by Riemann-Roch, this is equivalent to

$$h^0(C, \mathcal{L}) = \deg \mathcal{L} - g + 1 + h^1(C, \mathcal{L}) \ge 2g - 2 - g + 1 + 1 = g.$$

- iii) a) The space $H^0(C, \omega_C(-p))$ is the kernel of the evaluation map $H^0(C, \omega_C) \rightarrow (\omega_C)_p \cong \mathbb{C}$ at p. The fact from class shows that this evaluation map is surjective, hence its kernel has codimension 1 in the g-dimensional space $H^0(C, \omega_C)$.
 - b) The long exact sequence (with dimensions indicated) is as follows

$$0 \to \underbrace{H^0(\mathcal{O})}_1 \to \underbrace{H^0(\mathcal{O}(p))}_? \to \underbrace{H^0(\mathcal{O}(p)|_p)}_1 \to \underbrace{H^1(\mathcal{O})}_{h^0(\omega_C)=g} \to \underbrace{H^1(\mathcal{O}(p))}_{h^0(\omega_C(-p))=g-1} \to 0$$

where we used Serre duality and part a) for the last two terms. Now the map $H^1(\mathcal{O}) \to H^1(\mathcal{O}(p))$ has kernel of dimension exactly 1, so the map $H^0(\mathcal{O}(p)|_p) \to H^1(\mathcal{O})$ must be nonzero, hence injective. This implies that $H^0(\mathcal{O}(p)) \to H^0(\mathcal{O}(p)|_p)$ is the zero-map. But then $H^0(\mathcal{O}(p)) \cong H^0(\mathcal{O})$ is one-dimensional, as claimed.

c) If $\mathcal{O}(p) = \mathcal{O}(q)$ with $p \neq q$, then by Exercise 3, Sheet 4 the line bundle $\mathcal{O}(p)$ has sections s_p, s_q with $\operatorname{div}(s_p) = [p]$, $\operatorname{div}(s_q) = [q]$. Clearly s_p, s_q must be linearly independent, so $h^0(C, \mathcal{O}(p)) \geq 2$, a contradiction.

- **3.** Let C be a smooth projective curve of genus g and let \mathcal{L} be a line bundle on C. Let s_0, \ldots, s_r be a basis of $H^0(C, \mathcal{L})$. Remember the following equivalences from the lecture: The data $(C, \mathcal{L}, s_0, \ldots, s_r)$ gives
 - a map $\varphi : C \to \mathbb{P}^r$ iff the morphism $H^0(C, \mathcal{L}) \to H^0(C, \mathcal{L}|_p) \cong \mathbb{C}$ is surjective for all $p \in C$.
 - a map $\varphi : C \to \mathbb{P}^r$ separating points iff the morphism $H^0(C, \mathcal{L}) \to H^0(C, \mathcal{L}|_{p+q}) \cong \mathbb{C}^2$ is surjective for all $p, q \in C$ with $p \neq q$.
 - an embedding $\varphi : C \to \mathbb{P}^r$ iff the morphism $H^0(C, \mathcal{L}) \to H^0(C, \mathcal{L}|_{p+q})$ is surjective for all $p, q \in C$.

Here a map φ separates points iff φ is injective and it is an embedding iff its differential is nowhere zero, i.e. the map $\varphi_* : T_p C \to T_{\varphi(p)} \mathbb{P}^r$.

- i) Give a proof of the first two criteria and use long exact sequences in cohomology to reformulate all three criteria in terms of the quantities $h^0(C, \mathcal{L}) h^0(C, \mathcal{L}(-p))$ and $h^0(C, \mathcal{L}) h^0(C, \mathcal{L}(-p-q))$.
- ii)* Give a proof of the third criterion. *Hint:* The map $\varphi_* : T_pC \to T_{\varphi(p)}\mathbb{P}^r$ is nonzero iff there is a function f around $\varphi(p)$ vanishing to order 1 at $\varphi(p)$ such that $f \circ \varphi$ also vanishes to order exactly 1 at p. Now in the series of inclusions $H^0(C, \mathcal{L}(-2p)) \subset H^0(C, \mathcal{L}(-p)) \subset H^0(C, \mathcal{L})$, where are the sections s of \mathcal{L} vanishing exactly to order 1 at p? You might want to show and use the general fact that for any line bundle \mathcal{L}' we have $h^0(C, \mathcal{L}') - h^0(C, \mathcal{L}'(-p)) = 0$ or 1, i.e. h^0 can change by at most 1 when twisting by a point.
- iii) Use Serre duality to show that any line bundle \mathcal{L}' with $\deg \mathcal{L}' > 2g 2$ satisfies $h^1(C, \mathcal{L}') = 0$. What is $h^0(C, \mathcal{L}')$ in this case?
- iv) Conclude that for deg $\mathcal{L} \geq 2g$ the line bundle \mathcal{L} gives a map to projective space and for deg $\mathcal{L} \geq 2g + 1$ this map is an embedding.

Solution

i) A linear map to \mathbb{C} is surjective iff it is nonzero, so the first criterion asks that for every point p there should be a section $s \in H^0(C, \mathcal{L})$ with $s(p) \neq 0$. This is equivalent to asking that not all basis elements s_i vanish simultaneously at p and this in turn was equivalent to $(C, \mathcal{L}, s_0, \ldots, s_r)$ defining a map.

For the second criterion, assume first that φ separates points and let $p, q \in C$ be distinct. Then $\varphi(p), \varphi(q)$ are also distinct. Let $\mathcal{L}_p, \mathcal{L}_q \cong \mathbb{C}$ be the fibres of \mathcal{L} at p, q, then we need to show that the evaluation map $H^0(C, \mathcal{L}) \to \mathcal{L}_p \oplus \mathcal{L}_q$ is surjective. This is equivalent to finding sections $s_p, s_q \in H^0(C, \mathcal{L})$ such that $s_p(p) \neq 0, s_p(q) = 0$ and $s_q(p) = 0, s_q(q) \neq 0$. But since $\varphi(p), \varphi(q)$ are distinct points in \mathbb{P}^r , we can find linear forms $t_p = a_0 x_0 + a_1 x_1 + \ldots + a_r x_r$ and $t_q = b_0 x_0 + \ldots$ such that t_p vanishes at q but not at p and t_q vanishes at p but not q. Now we can see t_p, t_q as sections of $\mathcal{O}(1)$ and we define $s_p = \varphi^* t_p, s_q = \varphi^* t_q$. These sections satisfy the required conditions. This shows the second criterion.

The converse direction works similarly, where we use the fact that the pullback map $\varphi^* : H^0(\mathbb{P}^r, \mathcal{O}(1)) \to H^0(C, \mathcal{L} = \varphi^*(\mathcal{O}(1)))$ is an isomorphism. Indeed, the basis x_0, \ldots, x_r on the left is pulled back exactly to the basis s_0, \ldots, s_r on the right by definition of φ .

Now looking at the long exact sequence in cohomology for

$$0 \to \mathcal{L}(-p) \to \mathcal{L} \to \mathcal{L}|_p \to 0$$

we obtain

$$0 \to H^0(C, \mathcal{L}(-p)) \to H^0(C, \mathcal{L}) \to \mathcal{L}_p \cong \mathbb{C} \to \cdots$$

By linear algebra, the map on the right is surjective iff its kernel, given by $H^0(C, \mathcal{L}(-p))$, has codimension 1 in $H^0(C, \mathcal{L})$, in other words $h^0(C, \mathcal{L}) - h^0(C, \mathcal{L}(-p)) = 1$. A similar argument using the exact sequence

$$0 \to \mathcal{L}(-p-q) \to \mathcal{L} \to \mathcal{L}|_{p+q} \to 0$$

shows that the second and third criteria are equivalent to asking $h^0(C, \mathcal{L}) - h^0(C, \mathcal{L}(-p-q)) = 2$ for all $p \neq q$ or for all p, q, respectively.

ii)* We first prove the auxilliary fact that $h^0(C, \mathcal{L}') - h^0(C, \mathcal{L}'(-p)) = 0$ or 1 for any line bundle \mathcal{L}' . Indeed, looking at the long exact sequence in the solution of i), the codimension of $H^0(C, \mathcal{L}(-p)) \subset H^0(C, \mathcal{L})$ can either be 0 or 1, depending on whether $H^0(C, \mathcal{L}) \to \mathcal{L}_p \cong \mathbb{C}$ is the zero map or surjective.

Now for the criterion, as described in the hint the map $\varphi_*: T_pC \to T_{\varphi(p)}\mathbb{P}^r$ is nonzero iff there is a (linear) function $f = a_0x_0 + \ldots + a_rx_r$ vanishing at $\varphi(p)$ such that $f \circ \varphi$ vanishes to order exactly 1 at p. Now we can interpret f as a section of $\mathcal{O}(1)$ and then $f \circ \varphi$ corresponds to the pullback section $\varphi^*f = a_0s_0 + \ldots + a_rs_r$. The condition that it vanishes to order exactly 1 at p is equivalent to this section being in $H^0(C, \mathcal{L}(-p))$ but not $H^0(C, \mathcal{L}(-2p))$, so $H^0(C, \mathcal{L}(-2p)) \subset H^0(C, \mathcal{L}(-p))$ is a strict inclusion. Moreover by the first criterion we also know that $H^0(C, \mathcal{L}(-p)) \subset H^0(C, \mathcal{L})$ is a strict inclusion. Also, by the auxilliary fact both inclusions can have codimension at most 1, so they have codimension exactly 1. Thus $h^0(C, \mathcal{L}) - h^0(C, \mathcal{L}(-2p)) = 2$. By the argument from i) this is equivalent to the map $H^0(C, \mathcal{L}) \to H^0(C, \mathcal{L}|_{2p})$ being surjective.

iii) By Serre duality $h^1(C, \mathcal{L}') = h^0(C, \omega_C \otimes (\mathcal{L}')^{\vee})$. But

$$\deg \omega_C \otimes (\mathcal{L}')^{\vee} = 2g - 2 - \deg \mathcal{L}' < 0,$$

so this line bundle cannot have any nonzero sections, hence $h^0(C, \omega_C \otimes (\mathcal{L}')^{\vee}) = 0$. By Riemann-Roch we have

$$h^{0}(C, \mathcal{L}') = h^{0}(C, \mathcal{L}') - h^{1}(C, \mathcal{L}') = \deg \mathcal{L}' - g + 1.$$

iv) The degree condition ensures that we can apply part iii) to the line bundles $\mathcal{L}, \mathcal{L}(-p)$ in the first case and $\mathcal{L}, \mathcal{L}(-p-q)$ in the second and indeed obtain

$$h^{0}(C, \mathcal{L}) - h^{0}(C, \mathcal{L}(-p)) = (\deg \mathcal{L} - g + 1) - (\deg \mathcal{L} - 1 - g + 1) = 1$$

and

$$h^{0}(C, \mathcal{L}) - h^{0}(C, \mathcal{L}(-p-q)) = (\deg \mathcal{L} - g + 1) - (\deg \mathcal{L} - 2 - g + 1) = 2.$$

By the reformulation in part i) this gives that \mathcal{L} defines a map to $\mathbb{P}^{\deg \mathcal{L}-g}$ in the first case and that this map is an embedding in the second case.

- **4.** Recall that a curve C is hyperelliptic iff it admits a degree two map to \mathbb{P}^1 .
 - i) Show that every curve of genus 0 is hyperelliptic.
 - ii) Show that every curve of genus 1 is hyperelliptic.
 - iii) Show that every curve of genus 2 is hyperelliptic.
 - iv) Let X be a variety, \mathcal{L} a line bundle on X and assume $f: X \to \mathbb{P}^n$ is given by sections s_0, \ldots, s_n of \mathcal{L} . Show that the following are equivalent:
 - a) $f(X) \subset \mathbb{P}^n$ is *nondegenerate*, i.e. there exists no hyperplane in \mathbb{P}^n containing f(X).
 - b) The map $H^0(\mathbb{P}^n, \mathcal{O}(1)) \to H^0(X, f^*(\mathcal{O}(1))) = H^0(X, \mathcal{L})$ induced by pullback via f is injective.
 - c) The sections s_0, \ldots, s_n are linearly independent.

In these cases, also the map f itself is called nondegenerate.

- v) Show that every nondegenerate map $f : \mathbb{P}^1 \to \mathbb{P}^d$ of degree d is after a linear change of coordinates on \mathbb{P}^d a rational normal curve, i.e. the map $[s:t] \mapsto [s^d: s^{d-1}t: s^{d-2}t^2: \ldots: st^{d-1}: t^d]$. We note that for $d \ge 1$ this map is an isomorphism onto its image. *Hint:* Show that a linear change of coordinates simply means that you take corresponding linear combinations of the sections of a line bundle defining f.
- vi) Prove that for a hyperelliptic curve C of genus $g \ge 2$ with hyperelliptic map $\varphi: C \to \mathbb{P}^1$, the composition $f \circ \varphi: C \to \mathbb{P}^{g-1}$ of φ with a nondegenerate map $f: \mathbb{P}^1 \to \mathbb{P}^{g-1}$ of degree g-1 is (isomorphic to) the canonical map, i.e. the map induced by the line bundle ω_C and its g sections. *Hint:* First show that the line bundle \mathcal{L} on C inducing the map $f \circ \varphi$ has degree 2g-2, then use Exercise 2 ii) above.
- vii) Conclude that for $g(C) \geq 2$ the hyperelliptic map $C \to \mathbb{P}^1$ is unique up to change of coordinates on \mathbb{P}^1 .

Solution

- i) A curve C of genus 0 is isomorphic to \mathbb{P}^1 and the map $\mathbb{P}^1 \to \mathbb{P}^1, z \mapsto z^2$ is of degree 2.
- ii) Let $E = \mathbb{C}/\Lambda$ be an elliptic curve, then the Weierstrass function \wp is a meromorphic function, i.e. a map $\wp : E \to \mathbb{P}^1$. Since the preimage of ∞ is 2[0], the map \wp is of degree 2. Note that \wp is exactly invariant under the involution $z \mapsto -z$ on E, which is the hyperelliptic involution.
- iii) The line bundle ω_C of a genus 2 curve C has degree $2 \cdot 2 2 = 2$ and g = 2 sections, not vanishing simultaneously, so the canonical map $C \to \mathbb{P}^1$ has degree 2.

- iv) We show the equivalence of the negations of the above statements: $f(X) \subset \mathbb{P}^n$ is degenerate iff there is a hyperplane containing it. Hyperplanes are cut out by sections s of $\mathcal{O}(1)$, so this is equivalent to the existence of a section s which pulls back to zero under f, i.e. a nonzero element of the kernel of $H^0(\mathbb{P}^n, \mathcal{O}(1)) \to H^0(X, \mathcal{L})$. But this map is simply given by sending the basis x_0, \ldots, x_n on the left to the sections s_0, \ldots, s_n . Thus this map has nontrivial kernel iff s_0, \ldots, s_n are linearly dependent.
- v) A nondegenerate map $f: \mathbb{P}^1 \to \mathbb{P}^d$ of degree d is, by definition, given by a line bundle \mathcal{L} on \mathbb{P}^1 of degree d together with d+1 sections s_0, \ldots, s_d of \mathcal{L} . Now as we have seen, every line bundle on \mathbb{P}^1 is of the form $\mathcal{O}(m)$, so necessarily $\mathcal{L} \cong \mathcal{O}(d)$. By part iv) the sections s_0, \ldots, s_d are linearly independent sections in $H^0(\mathbb{P}^1, \mathcal{O}(d))$, but this space has dimension d+1, so they form a basis. Hence, we can express the usual basis elements $s^d, s^{d-1}t, \ldots, st^{d-1}, t^d$ of $H^0(\mathbb{P}^1, \mathcal{O}(d))$ as linear combinations of s_0, \ldots, s_d . Then the invertible $(d+1) \times (d+1)$ matrix defining these linear combinations induces a linear change of coordinates $\psi : \mathbb{P}^d \to \mathbb{P}^d$ and $\psi \circ f$ then has exactly the form $[s:t] \mapsto [s^d: s^{d-1}t: s^{d-2}t^2: \ldots: st^{d-1}: t^d].$
- vi) The map $f \circ \varphi$ is given by a line bundle $\mathcal{L} = (f \circ \varphi)^* \mathcal{O}(1)$ with sections s_0, \ldots, s_{g-1} satisfying $s_i = (f \circ \varphi)^* x_i$. We need to show that $\mathcal{L} \cong \omega_C$ and that the s_i are a basis of $H^0(C, \omega_C)$.

Since f is degree g - 1, it satisfies $f^*\mathcal{O}(1) \cong \mathcal{O}(g - 1)$. Assume that the hyperelliptic map φ is given by a line bundle \mathcal{M} (of degree 2), then we have

$$\mathcal{L} = (f \circ \varphi)^* \mathcal{O}(1) = \varphi^* f^* \mathcal{O}(1) = \varphi^* \mathcal{O}(g-1) = \varphi^* \mathcal{O}(1)^{\otimes g-1}$$

= $(\varphi^* \mathcal{O}(1))^{\otimes g-1} = \mathcal{M}^{\otimes g-1}.$

Since \mathcal{M} has degree 2, the line bundle \mathcal{L} has degree 2g - 2.

By Exercise 2 ii) we have $\mathcal{L} \cong \omega_C$ if we can show $h^0(C, \mathcal{L}) \ge g$. But note that we can obtain sections of \mathcal{L} by pullback via $f \circ \varphi$ and by part iv) we have that the map $H^0(\mathbb{P}^{g-1}, \mathcal{O}(1)) \to H^0(C, \mathcal{L})$ is injective (note that fis nondegenerate and φ is surjective, so $f \circ \varphi(C)$ is nondegenerate). Since $\dim H^0(\mathbb{P}^{g-1}, \mathcal{O}(1)) = g$, we have showed that indeed $h^0(C, \mathcal{L}) \ge g$. Moreover, again by part iv), the sections s_0, \ldots, s_{g-1} are linearly independent, hence a basis of $H^0(C, \omega_C)$. Thus $f \circ \varphi$ is isomorphic to the canonical map of C.

vii) We have just seen that for a hyperelliptic curve C of genus $g \geq 2$, its canonical map $\Psi: C \to \mathbb{P}^{g-1}$ factors through any hyperelliptic map $C \to \mathbb{P}^1$ and an embedding $\mathbb{P}^1 \to \mathbb{P}^{g-1}$. But this means that the image of Ψ is (abstractly) isomorphic to \mathbb{P}^1 and hence any hyperelliptic map is isomorphic to $\Psi: C \to \Psi(C)$. But this Ψ is canonical (in both senses of the word) and does not depend on any choices, so the hyperelliptic map is unique up to isomorphisms of \mathbb{P}^1 .

Exercises with * are possibly harder and should be considered as optional challenges.