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In all of the following questions, “curve” means “irreducible nonsingular
projective curve”.

1. Show that any curve of genus 0 is isomorphic to P1.

2. Show that a line bundle L of degree 0 on a curve C has h0(C,L) = 0 or 1 and
L is the trivial line bundle iff h0(C,L) = 1.

3. Let Λ = Zv+Zw ⊂ C be a lattice, with v, w ∈ C. Describe the set of morphisms
from P1 to C/Λ.

4. Write down a morphism f : P1 → P1 of degree at least 2 and give its divisor
div(f). Also compute the line bundle f ∗O(1).

5. Show that every curve of genus at most 2 is hyperelliptic. Bonus: Why is there
a curve of genus 3 that is non-hyperelliptic.

6. For an elliptic curve E = C/Λ with Λ = Zv +Zw ⊂ C a lattice, go through the
definition of the Abel-Jacobi map and show that Jac0(E) ∼= E.

7. Let E be an elliptic curve and p ∈ E a point. Compute h0(E,O(kp)) for all
k ∈ Z.

8. Show, using only the Riemann-Roch theorem and Serre duality, that every line
bundle L on a curve C has a meromorphic section.

9. Show that for a curve C, its Picard group Pic(C) is countable iff the genus of
C is 0.

10. For which numbers n does there exist a degree 2 cover C → P1 ramified over
exactly n different points?

11. Prove that the group of automorphisms f : P1 → P1 is isomorphic to PGL2 =
GL2/C∗. Hint: Show that for an isomorphism f with inverse g, one has f ∗O(1) =
O(1).

12. Let C ⊂ P3 be the intersection of two nonsingular quadrics Q1, Q2 ⊂ P3 such
that C is a nonsingular, irreducible, projective curve. Compute the genus g of
C.

13. Let C be a curve of genus 1. How many line bundles L ∈ Pic(C) satisfy L⊗2 ∼=
O? Bonus: What is the answer for a genus g curve C?

14. Bonus: Give an argument for the following claim: “The space of hyperelliptic
curves of genus g ≥ 2 has dimension 2g − 1”. You don’t have to give precise
definitions here.


