Exam preparation sheet

In all of the following questions, "curve" means "irreducible nonsingular projective curve".

- 1. Show that any curve of genus 0 is isomorphic to \mathbb{P}^1 .
- 2. Show that a line bundle \mathcal{L} of degree 0 on a curve C has $h^0(C, \mathcal{L}) = 0$ or 1 and \mathcal{L} is the trivial line bundle iff $h^0(C, \mathcal{L}) = 1$.
- 3. Let $\Lambda = \mathbb{Z}v + \mathbb{Z}w \subset \mathbb{C}$ be a lattice, with $v, w \in \mathbb{C}$. Describe the set of morphisms from \mathbb{P}^1 to \mathbb{C}/Λ .
- 4. Write down a morphism $f : \mathbb{P}^1 \to \mathbb{P}^1$ of degree at least 2 and give its divisor $\operatorname{div}(f)$. Also compute the line bundle $f^*\mathcal{O}(1)$.
- 5. Show that every curve of genus at most 2 is hyperelliptic. *Bonus:* Why is there a curve of genus 3 that is non-hyperelliptic.
- 6. For an elliptic curve $E = \mathbb{C}/\Lambda$ with $\Lambda = \mathbb{Z}v + \mathbb{Z}w \subset \mathbb{C}$ a lattice, go through the definition of the Abel-Jacobi map and show that $\operatorname{Jac}^{0}(E) \cong E$.
- 7. Let E be an elliptic curve and $p \in E$ a point. Compute $h^0(E, \mathcal{O}(kp))$ for all $k \in \mathbb{Z}$.
- 8. Show, using only the Riemann-Roch theorem and Serre duality, that every line bundle \mathcal{L} on a curve C has a meromorphic section.
- 9. Show that for a curve C, its Picard group Pic(C) is countable iff the genus of C is 0.
- 10. For which numbers n does there exist a degree 2 cover $C \to \mathbb{P}^1$ ramified over exactly n different points?
- 11. Prove that the group of automorphisms $f : \mathbb{P}^1 \to \mathbb{P}^1$ is isomorphic to $\mathrm{PGL}_2 = \mathrm{GL}_2/\mathbb{C}^*$. *Hint:* Show that for an isomorphism f with inverse g, one has $f^*\mathcal{O}(1) = \mathcal{O}(1)$.
- 12. Let $C \subset \mathbb{P}^3$ be the intersection of two nonsingular quadrics $Q_1, Q_2 \subset \mathbb{P}^3$ such that C is a nonsingular, irreducible, projective curve. Compute the genus g of C.
- 13. Let C be a curve of genus 1. How many line bundles $\mathcal{L} \in \operatorname{Pic}(C)$ satisfy $\mathcal{L}^{\otimes 2} \cong \mathcal{O}$? Bonus: What is the answer for a genus g curve C?
- 14. Bonus: Give an argument for the following claim: "The space of hyperelliptic curves of genus $g \ge 2$ has dimension 2g 1". You don't have to give precise definitions here.