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Def: Let Ω ⊂ Rn be open. Ω is said to be (path) connected if for every pair of points x, y ∈ Ω there exists a
C1-path γ : [0, 1]→ Ω with γ(0) = x and γ(1) = y.

The following theorem gives a necessary condition for the existence of a potential function f for a vectorfield v (i.e.
v = ∇f).

Theorem (Satz 7.4.2 in Struwe): Let v be a continuous vectorfield on an open, connected set Ω ⊂ Rn. Then the
following 3 statements are equivalent

1. v is the gradient of a potential function f : Ω→ R (i.e. v = ∇f).

2. The line integral of v is independent of the path. I.e. if γ1 : [a1, b1] → Ω and γ2 : [a2, b2] → Ω are two
piecewise C1-paths satisfying γ1(a1) = γ2(a2) and γ1(b1) = γ2(b2), then∫

γ1

v dγ1 =

∫
γ2

v dγ2.

3. The line integral of v around any loop vanishes. I.e. if γ : [a, b] → Ω is a piecewise C1-path such that
γ(a) = γ(b) then ∫

γ

v dγ.

Sketch of proof: It is easy to check that the second and third statements are equivalent. If v = ∇f and γ : [a, b]→ Ω
then ∫

γ

v dγ =

∫ b

a

∇f(γ(t)) · γ′(t) dt =

∫ b

a

d

dt
f(γ(t)) dt = f(γ(b))− f(γ(a)).

In particular we see that the path integral only depends on the endpoints of the path. This proves that 1. implies
2. Assume condition 2. in the statement of the theorem. Then we need to show 1. This is done exactly as in the 1
dimensional case: Fix p0 ∈ Ω. Then we define

f(x) :=

∫
γx

v dγx

where γx : [0, 1] → Ω is any C1-path such that γx(0) = p0 and γx(1) = x. By assumption f is well-defined. Now
one needs to check that f is differentiable with ∇f = v. For this we refer to Struwe’s script. This finishes the sketch
of the proof.

Def: A continuous vector field v : Ω → R is conservative if it has a potential (i.e. ∃f : Ω ⊂ Rn → R such that
∇f = v)

Example: v =

y2xz
1

, γ1, γ2 : [0, 1]→ R3, γ1(t) =

tt
t

, γ2(t) =

 tt2
t3

, γ1(0) = γ2(0), γ1(1) = γ2(1).∫
γ1

vdγ1 =
5

3
,

∫
γ2

vdγ2 =
23

15
.

Indeed if f : R3 → R would satisfy

∂f

∂x
= −y2, ∂f

∂y
= xz,

∂f

∂z
= 1 =⇒ f(x, y, z) = −y2x+ h(y, z)

∂f

∂z
=
∂h

∂z
=⇒ h(y, z) = z + g(y), f = −y2x+ z + g(y)

Mads Bisgaard is entirely responsible for any typos or mistakes in these notes. Please write him at mads.bisgaard@math.ethz.ch if
you spot a mistake.
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but now we have

xz =
∂f

∂y
= −2yx+ g′(y).

This cannot be solved for g, so v is not conservative.

Theorem: (Necessary condition for being conservative) Let Ω ⊂ Rn be open and let v : Ω→ R be a C1 vectorfield
(v = (v1, v2, ..., vn)). If v is conservative then

∂vi
∂xj

=
∂vj
∂xi

∀ 1 ≤ i, j ≤ n

Proof: If v = ∇f then f is in C2, so ∂2f
∂xj∂xi

= ∂2f
∂xi∂xj

. Now use

vi =
∂f

∂xi
=⇒ ∂vi

∂xj
=

∂2f

∂xj∂xi
.

Example: Let Ω := R2\{(0, 0)} and consider the vectorfield v : Ω→ R2,

v(x, y) =

[
−y

x2+y2
x

x2+y2

]

v is at least C1. Moreover, it is an easy computation to check that

∂v1
∂y

=
y2 − x2

(x2 + y2)2
=
∂v2
∂x

,

so v satisfies the condition in the above theorem. However, we saw in exercise 1a) on exercise sheet 8 that v is not
conservative.

Exercise: X = {(x, y) ∈ R2 |x > 0}, (x, y) = (r cosϕ, r sinϕ) with r > 0, ϕ ∈ (−π2 ,
π
2 ) and tanϕ = y

x =⇒ ϕ =
arctan( yx ). Now compute that

∇ϕ =

[
−y

x2+y2
x

x2+y2

]
= v

Hence, we conclude that v is conservative. But now note that v is exactly the same vectorfield as in the previous
example where we concluded that v was not conservative! The crucial point here is that in the exercise v is defined
on X and v is conservative on X, but it is not on Ω because the potential cannot be extended to all of Ω. The
important lesson: Being conservative is a property both of the vector-field and of the domain on which it is
defined.

Theorem: Let Ω ⊂ Rn be open and convex. Let v : Ω→ Rn be a C1 vector field such that

∂vi
∂xj

=
∂vj
∂xi

∀1 ≤ i, j ≤ n

Then v is conservative.

Note that in the Example above Ω is not convex. However, X is convex and we also checked in the exercise that v
is conservative on X.

Integration in Rn

Def: A (rectangular) box Q ∈ Rn is a set of type

Q =

n∏
i=1

Ii = {(x1, ..., xn) |xi ∈ Ii, ∀i ∈ {1, ..., n}}

where Ii = [ai, bi], i = 1, ..n. Hence Q = [a1, b1]× ...× [an, bn]

V ol(Q) =

n∏
i=1

|bi − ai| = µ(Q)

Def: A partition P = {Qj}lj=1 of Q is a collection of boxes Qj such that
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1. Q =

l⋃
i=1

Qi

2. the interior of Qi and Qj do not intersect for i 6= j (Qi ∩Qj = ∅)

We denote by P(Q) the set of all partitions of Q.

diam(Qj) := sup
x,y∈Qj

|x− y| (diameter of Qj)

Norm of partition P is δP := max1≤j≤l diam(Qj)
If we have points ξj ∈ Qj then we have a Riemann sum for the partition P :

Rf (P ) =

l∑
j=1

f(ξj)V ol(Qj) =

l∑
j=1

f(ξj)µ(Qj).

Def: Let f : Q→ R be bounded. Let

Uf (P ) =

l∑
j=1

inf
Qj

(f)µ(Qj) (lower Riemann sum), ”U” for ”untere”

Of (P ) =

l∑
j=1

sup
Qj

(f)µ(Qj) (upper Riemann sum, ”O” for ”obere”)

Def: A refinement of a partition P = {Qj} ∈ P(Q) is another partition P̃ = {Q̃k}mk=1 ∈ P(Q) such that each Q̃k
is contained in some Qj .

Lemma: If P̃ ∈ P(Q) is a refinement of P ∈ P(Q) then Uf (P̃ ) ≥ Uf (P ), Of (P̃ ) ≤ Of (P ). If P1, P2 ∈ P(Q) then
Uf (P1) ≤ Of (P2).

Def: Let f : Q→ R be bounded. We define

I(f) = sup{Uf (P ) |P ∈ P(Q)} (lower Riemann integral)

I(f) = inf{Of (P ) |P ∈ P(Q)} (upper Riemann integral)

We say that f is integrable if
I(f) = I(f).

If f is integrable then I(f) := I(f) = I(f).

Lemma: f : Q→ R bounded is integrable if and only if ∀ε > 0∃P ∈ P(Q) such that 0 ≤ Of (P )− Uf (P ) < ε

Proof: Assume f is integrable, hence I(f) = I(f). Let be ε > 0.
” =⇒ ” We can choose P ′, P ′′ ∈ P(Q) such that O ≤ I(f) − Uf (P ′) < ε

2 and 0 < Of (P ′′) − I(f) < ε
2 . Let

P ∈ P(Q) be a common refinement Of (P )− Uf (P ) ≤ Of (P ′′)− Uf (P ′) < ε.
” ⇐= ” Uf (P ) ≤ I(f) ≤ I(f) ≤ Of (P ) ∀P ∈ P(Q). In particular 0 < I(f) − I(f) ≤ Of (P ) − Uf (P ) ∀P ∈
P(Q). So, if for every ε > 0 we can find a partition P such that 0 ≤ Of (P ) − Uf (P ) < ε is satisfied then
I(f) = I(f).

Given P = {Qj}lj=1 ∈ P(Q) we consider a step function

f(x) =

l∑
j=1

cjχQj
(x).

where

χQj
(x) =

{
1 if x ∈ Qj
0 if x /∈ Qj

.

Then we have

I(f) =

l∑
j=1

cjV ol(Qj) = I(f) =⇒ f is integrable

Theorem: If f : Q→ R is continuous then f is integrable.
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Proof: We use the ”small span theorem”. Let ε > 0. Since f is continuous the small span theorem gives the
existence of a P = {Qj}lj=1 ∈ P(Q) such that

Spanf (Qj) := supQj
(f)− inf

Qj

(f) <
ε

V ol(Q)
∀ j ∈ {1, . . . , l}.

In particular

Of (P )−Uf (P ) =

l∑
j=1

sup
Qj

(f)V ol(Qj)−
l∑

j=1

inf
Qj

(f)V ol(Qj) =

l∑
j=1

Spanf (Qj)V ol(Qj) <
ε

V ol(Q)

l∑
j=1

V ol(Qj) = ε.

It now follows from the previous lemma that f is integrable. This finishes the proof.

More generally any f : Q → R which is continuous except on a set of zero content is integrable. Def: Let X be

a bounded subset of a plane, X ⊂ Q. The set X is said to have content zero if ∀ε > 0, ∃Q1, ..., Ql boxes whose
union contains X and whose sum of volumes doesn’t exceed ε. I.e.

X ⊂
l⋃

j=1

Qj ,

l∑
j=1

V ol(Qj) ≤ ε

Theorem: (small span theorem) If f : Q→ R is continuous then ∀ε > 0 ∃ a partition P = {Qj}lj=1 ∈ P(Q) such
that Spanf (Qj) < ε∀j ∈ {1, ..., l}, where Spanf (Q) = supQ(f)− infQ(f)

Theorem: Let f, g : Q ⊂ Rn → R be integrable and let α, β ∈ R. Then

1. (αf + βg) : Q→ R is integrable we have linearity∫
Q

(αf + βg)dµ = α

∫
Q

fdµ+ β

∫
q

gdµ

2. if f(x) ≤ g(x)∀ x ∈ Q we have monotonity ∫
Q

fdµ ≤
∫
Q

gdµ

3. if f(x) ≥ 0∀ x ∈ Q we have positivity ∫
Q

fdµ ≥ 0

4. (bounds) ∣∣∣ ∫
Q

fdµ
∣∣∣ ≤ ∫

Q

|f |dµ ≤ sup
Q
|f |V ol(Q)

5. P = {Qj}lj=1 ∈ P(Q) such that Q =
⋃l
j=1Qj and Qj ∩Qi = ∅ ∀i 6= j then we have additivity

∫
Q

fdµ =

l∑
j=1

∫
Qj

fdµ

Theorem: (Fubini) Let Q = [a1, b1]× ...× [an, bn] ⊂ Rn and let f : Q→ R be continuous then∫
Q

fdµ =

∫ bn

an

(∫ bn−1

an−1

(
...

∫ b1

a1

fdx1...
)
dxn−1

)
dxn

=

∫ b1

a1

(∫ b2

a2

(
...

∫ bn

an

fdxn...
)
dx2

)
dx1.

We can swap ranges: Example g : Q(2) → R with Q(2) = [a, b]× [c, d]. Then

∫
Q(2)

fdµ =

∫ d

c

∫ b

a

fdxdy =

∫ b

a

∫ d

c

fdydx

Exercise: Integral of f(x, y) = 2x+ 2yx = 2x(y + 1) on Q = [0, 1]× [−2, 2].
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We see that the first interval is the domain of x and the second the domain of y. Hence we have∫
Q

fdµ =

∫ 2

−2

∫ 1

0

f(x, y)dxdy =

∫ 2

−2

∫ 1

0

2x(y+1)dxdy =

∫ 2

−2

[
x2(y+1)

]1
x=0

dy =

∫ 2

−2
y+1dy =

[1

2
y2+y

]2
y=−2

= 4

And similarly one can compute that ∫ 1

0

∫ 2

−2
f(x, y)dydx = 4.
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