I.

(a) Zeigen Sie, dass für alle $n \in \mathbb{N}$ gilt:

1.
$$\lim_{x \to \infty} \frac{x^x}{e^{nx}} = \infty,$$
2.
$$\lim_{x \to \infty} \frac{\log(x)}{\sqrt[x]{x}} = 0.$$

(b) Zeigen Sie, dass für $a \in \mathbb{R}$, a > 0 gilt

1.
$$\lim_{x \to \infty} x^a = \infty$$
, 2. $\lim_{x \to 0} x^a = 0$,
3. $\lim_{x \to \infty} \frac{\log(x)}{x^a} = 0$, 4. $\lim_{x \to 0} x^a \log(x) = 0$.

II. Ziel dieser Aufgabe ist es den folgenden Grenzwert zu zeigen:

$$\log(2) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$
 (1)

1. In der Vorlesung wurde gezeigt:

$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n \qquad \text{für } -1 < x < 1.$$
 (2)

Folgern Sie mit Hilfe des Leibniz Kriteriums die Ungleichung:

$$\left| \log(1+x) - \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k \right| \le \frac{1}{n+1} \quad \text{für } 0 < x < 1.$$
 (3)

- 2. Zeigen Sie, dass (3) auch für x = 1 gilt, und folgern Sie hieraus (1).
- III. Berechnen Sie die folgenden Grenzwerte.
 - $1. \lim_{x \to \infty} x^{\frac{1}{x}}, \qquad 2. \lim_{n \to \infty} n(\sqrt[n]{x} 1) \text{ für } x > 0, \quad 3. \lim_{n \to \infty} \left(n + 1 n \cos\left(\frac{2}{n}\right) \right)^n$ $4. \lim_{x \to 0} \frac{x}{\arcsin(2x)}, \qquad 5. \lim_{x \to 0} \frac{\sinh(x) x}{x^3}, \qquad 6. \lim_{n \to \infty} \left(1 + \frac{2 \arctan(n)}{n} \right)^n.$

IV. Für a>0 und $z\in\mathbb{C}$ wurde in der Vorlesung der Ausdruck a^z definiert durch

$$a^z = e^{z \log(a)}.$$

Zeigen Sie die folgenden Identitäten für $a, b > 0, x \in \mathbb{R}$, und $z, w \in \mathbb{C}$:

1.
$$a^0 = 1$$
, 2. $a^1 = a$, 3. $a^{z+w} = a^z a^w$,
4. $(a^x)^z = a^{xz}$, 5. $(ab)^z = a^z b^z$, 6. $|a^z| = a^{\operatorname{Re}(z)}$.

V. Überprüfen Sie, welche der folgenden (stetigen) Funktionen gleichmässig stetig sind.

- 1. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{1 + x^2},$
- 2. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x$,
- 3. $f:(0,\infty)\to\mathbb{R}, \qquad f(x)=\sin\left(\frac{1}{x}\right).$

Abgabe: Montag, den 27. November 2017.