
Analysis III for D-BAUG, Fall 2017 — Lecture 12

Lecturer: Alex Sisto (sisto@math.ethz.ch)∗

1 The dynamic beam equation

Recall the static beam equation for the deflection curve y(x):

EIy′′′′(x) + ky(x) = f(x),

where E is a material constant, I is the moment of inertia of a cross-section of the beam, k is the
modulus of the elastic foundation, and f(x) is an external load. Let’s make a trivial but informative
re-arrangement of this equation:

0 = −EIy′′′′(x)− ky(x) + f(x),

which we interpret as saying that the net force acting on the beam is zero. This means that the
beam is in equilibrium. In the dynamic case this is no longer true. The net force is not zero, which
leads to acceleration and a time-dependent deflection curve y = y(x, t). It satisfies the PDE

ytt(x, t) = −EI
ρ
yxxxx(x, t)− k

ρ
y(x, t) +

f(x)

ρ
,

where ρ is the mass per unit length. As in the static case, the boundary conditions depend on how
the beam is attached. For example, if the beam is simply supported at both ends, the boundary
conditions are

y(0, t) = yxx(0, t) = y(L, t) = yxx(L, t) = 0, t ≥ 0.

Additionally, as usual for PDE, we must specify initial conditions y(x, 0) and yt(x, 0) corresponding
to the initial shape and initial velocity of the beam. In this lecture we will study the simplified
equation

ytt = −α2yxxxx.

2 Vibrations of a simply supported beam

We take the beam to have length L = 1 and be simply supported. This leads to the following IBVP:

∗These notes were originally written by Menny Akka and edited by Martin Larsson. Some material was also taken
from Alessandra Iozzi’s notes.

1



Find y = y(x, t) such that

(1)



ytt = −α2yxxxx in (0, 1)× (0,∞), (PDE)

y(0, t) = yxx(0, t) = 0

y(1, t) = yxx(1, t) = 0
for all t > 0, (BC)

y(x, 0) = f(x)

yt(x, 0) = g(x)
for all x ∈ (0, 1). (IC)

Here α > 0 is a given constant, and f(x) and g(x) are given functions.

To solve this IBVP we rely on familiar methods: separation of variables, superposition, and
Fourier series. We start with the Ansatz

y(x, t) = X(x) (A cos(ωt) +B sin(ωt))

for some constants ω, A, and B that we would like to determine. Note that we took a shortcut here
by directly making the Ansatz that the solution y(x, t) should oscillate in t. We could also have
started with the more general Ansatz X(x)T (t).

Plugging the Ansatz into the PDE gives

X(x)
(
−Aω2 cos(ωt)−Bω2 sin(ωt)

)
= −α2X ′′′′(x) (A cos(ωt) +B sin(ωt)) .

Dividing both sides by (A cos(ωt) +B sin(ωt)) gives the ODE

X ′′′′(x)− ω2

α2
X(x) = 0.

Its general solution is

X(x) = C cos

(√
ω

α
x

)
+D sin

(√
ω

α
x

)
+ E cosh

(√
ω

α
x

)
+ F sinh

(√
ω

α
x

)
Exercise 2.1. Derive this general solution using the Laplace transform!

In order to determine the constants we use the boundary conditions. In particular,

y(0, t) = 0 =⇒ X(0) = 0 =⇒ C + E = 0,

yxx(0, t) = 0 =⇒ X ′′(0) = 0 =⇒ −C + E = 0,

and from this we get C = E = 0. Taking this into account we use the remaining boundary conditions
to obtain

y(1, t) = 0 =⇒ D sin

(√
ω

α

)
+ F sinh

(√
ω

α

)
= 0,

yxx(1, t) = 0 =⇒ −D sin

(√
ω

α

)
+ F sinh

(√
ω

α

)
= 0.
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From this it follows that

D sin

(√
ω

α

)
= 0 and F sinh

(√
ω

α

)
= 0,

and since sinh(
√
ω/α) 6= 0 we must have F = 0. We don’t want D = 0 however, since this would

result in the zero solution. Therefore sin(
√
ω/α) = 0, so that

ω

α
= (nπ)2, n = 1, 2, . . . .

We end up with solutions of the form

y(x, t) = sin(nπx)
(
A cos(α(nπ)2t) +B sin(α(nπ)2t)

)
,

which satisfy (PDE) and (BC), but not yet (IC).
At this point we use superposition to get the more general solution

y(x, t) =

∞∑
n=1

sin(nπx)
(
an cos(α(nπ)2t) + bn sin(α(nπ)2t)

)
,

where an and bn are constants. By superposition, this solution still satisfies (PDE) and (BC). Its
initial value and initial velocity are

y(x, 0) =

∞∑
n=1

an sin(nπx), (2.1)

yt(x, 0) =

∞∑
n=1

bnα(nπ)2 sin(nπx). (2.2)

The initial conditions demand that these should match f(x) and g(x), respectively. By expressing
f(x) and g(x) as Fourier sine series, we can achieve this by simply matching the coefficients.
Therefore,

an = 2

∫ 1

0

f(x) sin(nπx)dx, bn =
2

α(nπ)2

∫ 1

0

g(x) sin(nπx)dx. (2.3)

Let us summarize what we have found:

The general solution of IBVP (1) for vibrations of a simply supported beam of
length L = 1 is given by

y(x, t) =

∞∑
n=1

sin(nπx)
(
an cos(α(nπ)2t) + bn sin(α(nπ)2t)

)
,

where

an = 2

∫ 1

0

f(x) sin(nπx)dx,

bn =
2

α(nπ)2

∫ 1

0

g(x) sin(nπx)dx.
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Exercise 2.2. Work out the general solution for a general length L, not necessarily L = 1.

Example 2.3. Let’s take α = 1, y(x, 0) = sin(πx) + 0.5 sin(3πx), and yt(x, 0) = 0. In this case
it is easier to directly identify an and bn from (2.1)–(2.2) than to compute the integrals in (2.3).
Either method works however, and gives

bn = 0, n ≥ 1,

a1 = 1,

a2 = 0,

a3 = 0.5,

an = 0, n ≥ 1.

Therefore the solution is

y(x, t) = sin(πx) cos(π2t) + 0.5 sin(3πx) cos(9π2t).

It is interesting to compare this with the solution of the wave equation for vibrations of a finite
string (with L = 1, c = 1) with the same initial condition, which is

u(x, t) = sin(πx) cos(πt) + 0.5 sin(3πx) cos(3πt).

You see that a beam vibrates at higher frequencies than a string. The frequencies of the string are
multiples n of a basic frequency, while for the beam the multiples are n2.

3 Solving PDE using the Laplace transform

We now leave the beam equation, and return to the Laplace transform. So far we have used the
Laplace to solve ODE, but it can also be used to solve PDE. We finish this lecture with an example
of how that works. The material of this section is from pages 101–103 of Farlow’s book.

Let us consider heat flow in a semi-infinite medium; you should think of a pool which is deep
enough that the boundary effects at the bottom are negligible. We approximate this situation
by considering an infinitely deep pool. At the surface there are boundary effects, however: if the
surface temperature u(0, t) is larger than the air temperature (which we normalize to zero), then
heat flows out. If u(0, t) is less than the air temperature, then heat flows in. At time zero we
assume that the pool has a constant uniform temperature of φ0. This is modeled by the following
IBVP:

Find u = u(x, t) such that

(2)


ut = uxx in (0,∞)× (0,∞), (PDE)

ux(0, t) = u(0, t) for all t > 0, (BC)

u(x, 0) = φ0 for all x > 0. (IC)

Here φ0 is a given constant.
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The method we’ll use to solve this IBVP is to take the Laplace transform in the t variable, but
not in the x variable. That means considering the function

U(x, s) = L{u(x, t)} =

∫ ∞
0

e−stu(x, t)dt.

An important property of the Laplace transform is that we may interchange differentiation in x
with the Laplace transform. In particular,

L
{
∂2

∂x2
u(x, t)

}
=

∂2

∂x2
L{u(x, t)}.

Therefore, the PDE gives us

sU(s, x)− u(x, 0) =
∂2

∂x2
U(x, s).

Taking into account the initial condition, our IBVP turns into the following problem:{
sU(x, s)− φ0 = ∂2

∂x2U(x, s) in (0,∞)× (0,∞),

∂
∂xU(0, s) = U(0, s) for all s > 0.

Think about what just happened: by taking the Laplace transform, we got rid of the derivative
with respect to t. If we freeze the s variable, the above is nothing but an ODE in the x variable!
To make this easier to see, let’s define the function

V (x) = U(x, s).

It satisfies
sV (x)− φ0 = V ′′(x), V ′(0) = V (0).

The general solution (homogeneous plus particular) of this ODE is

V (x) = Ae
√
s x +Be−

√
s x +

φ0
s
.

Since we don’t want exploding temperatures, u(x, t) should be bounded. Therefore V (x) = U(x, s)
should also be bounded, which means that A must be zero. The boundary condition V ′(0) = V (0)
then tells us

−
√
sB = B +

φ0
s
,

hence

B = −φ0
1

s(
√
s+ 1)

.

Therefore

U(x, s) = V (x) = −φ0
e−
√
s x

s(
√
s+ 1)

+
φ0
s

Finding the inverse transform u(x, t) = L−1{U(x, s)} is a bit tricky, but can be done. The resulting
solution is

u(x, t) = −φ0
(

erfc

(
x

2
√
t

)
− erfc

(√
t+

x

2
√
t

)
ex+t

)
+ φ0,

where erfc(x) = 2√
π

∫∞
x
e−ξ

2

dξ, and is called the complementary-error function.
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