
Analysis III for D-BAUG, Fall 2017 — Lecture 2

Lecturer: Alex Sisto (sisto@math.ethz.ch)∗

0 Recall from last time:

Last time we considered (among other things) the classification of second-order linear PDE in
two variables, namely PDE of the form

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G,

where the coefficients A,B,C,D,E, F,G are either constant, or functions of the independent vari-
ables x, y. The three key representative examples of such PDE are (here α is some given constant):

1-dimensional heat equation: ut = α2uxx (parabolic)

1-dimensional wave equation: utt = α2uxx (hyperbolic)

2-dimensional Laplace equation: uxx + uyy = 0 (elliptic)

The next few lectures will be about the 1-dimensional heat equation.

1 The heat equation: Initial-Boundary Value Problem (1)

The following equation is a model for heat flow in a laterally insulated thin rod:

Find u = u(x, t) such that

(IBVP)

 ut = α2uxx in Ω = (0, L)× (0,∞), (PDE)
u(0, t) = u(L, t) = 0 for all t > 0, (BC)
u(x, 0) = φ(x) for all x ∈ (0, L). (IC)

Here α and L > 0 are given constants, and φ(x) is a given function.

This is called an Initial-Boundary Value Problem (IBVP). This is because it asks for a
function u(x, t) which not only satisfies the PDE in the region Ω, but also has a prescribed behavior
on the boundary of this region, as well as at the initial time t = 0. Indeed, it is required that

∗These notes were originally written by Menny Akka and edited by Martin Larsson. Some material was also taken
from Alessandra Iozzi’s notes.
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u(0, t) = u(L, t) = 0 for all t > 0 (the boundary condition (BC)), and that u(x, 0) = φ(x) for all
x ∈ (0, L) (the initial condition (IC)). One can visualize this by drawing the following space-time
picture:

(IC): u(x, 0) = φ(x)

(BC): u(0, t) = u(L, t) = 0

(PDE): ut = α2uxx in Ω

0 L
x

t

The IBVP above is a model for heat flow in a laterally insulated thin rod of length L. More
specifically, u(x, t) represents the temperature at location x and time t. The boundary conditions
(BC) state that the endpoints of the rod are kept at zero degrees at all times. The initial condition
(IC) states that the initial heat distribution at time t = 0 is given by the function φ(x). This is
illustrated in the following two figures:

Heat only flows
along the x-axis
(laterally insulated) u(x, t) = temperature

at location x at time t

x

Heating/cooling
at the ends to
maintain 0◦

0 L
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Initial heat profile
u(x, 0) = φ(x)

0 L

φ(x)

While the meaning of (BC) and (IC) is fairly clear, it is much less obvious why the PDE itself,
ut = α2uxx, is a reasonable model for heat flow. We will not give a full derivation here, but only a
brief explanation of why this PDE is consistent with our intuition of how heat flow behaves. The
key physical principle is the following:

The temperature at any given point tends to move

toward the average temperature at nearby points.

Let’s see how the PDE is consistent with this principle. Consider a location x0 ∈ (0, L) some-
where along the rod, and a time point t0 > 0. Then u(x0, t0) is the temperature at this time and
location. Let’s think about how ut(x0, t0), which describes the rate of change in temperature at
location x0, ought to depend on the temperature at nearby points.

Suppose uxx(x0, t0) > 0. Then u(x, t0) viewed as a function of x is convex near x0:

0 L
x

u(x, t0)

x0

u(x, t0) near x0

Therefore, the average temperature near x0 is larger than the temperature u(x0, t0) at x0. But
then the temperature at x0 should be increasing, meaning that ut(x0, t0) > 0. This is consistent
with the PDE.

Now, if uxx(x0, t0) is not only positive, but very large, the convexity of the function u(x, t0)
around x0 is more pronounced:
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0 L
x

u(x, t0)

x0

u(x, t0) near x0

The average temperature near x0 is now significantly larger than the temperature at x0. Thus the
temperature at x0 should be rising rather quickly, meaning that ut(x0, t0) should be rather large.
This is again consistent with the PDE, which states that ut is actually proportional to uxx, and is
therefore large whenever uxx is.

An analogous discussion (with convexity replaced by concavity) can be carried out when uxx(x0, t0) <
0. The conclusion is again that the PDE is consistent with the principle that the temperature at a
point tends to move toward the average temperature at nearby points.

Remark 1.1. In the IBVP above, we could certainly use a different constant than zero for the
boundary conditions. This would not affect the solution method. Indeed, if (BC) is replaced by
u(0, t) = u(L, t) = c for some constant c, then a function v(x, t) solves this modified IBVP if and
only if the function u(x, t) = v(x, t)− c solves the IBVP above (with zero boundary conditions, but
φ(x) replaced by φ(x)− c in the initial condition). Exercise: Check this!

What happens if the extremities are kept at different temperatures instead?

2 Solving the IBVP via separation of variables

We are now going to solve the IBVP in three steps, for certain functions φ(x) in (IC). First, we look
for a family of functions u(x, t) that satisfy the PDE in Ω. Second, we single out those functions
that in addition satisfy (BC). Third, we find a family of specific initial conditions φ(x) so that we
can solve the corresponding IBVP using the functions u(x, t) that we found. As it turns out, these
cases will be the stepping stone towards solving the IBVP in the general case in future lectures.

We make the following separation of variables Ansatz:

u(x, t) = X(x)T (t), (2.1)

where X(x) and T (t) are unknown functions.

Step I: Find the general form of X(x) and T (t)

Plugging the Ansatz (2.1) into the PDE leads to the equation

X(x)T ′(t) = α2X ′′(x)T (t).
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Re-writing this equation yields
X ′′(x)

X(x)
=

1

α2

T ′(t)

T (t)
.

But since this holds for all x and t, both sides must be equal to some constant K. (To see this,
plug in for example t = 3 to get X ′′(x)/X(x) = K for all x, where K = (1/α2)T ′(3)/T (3).) This
leads to the two ODEs

X ′′(x) = KX(x),

T ′(t) = α2KT (t).
(2.2)

Our one original PDE has been replaced by two ODEs! This is nice, because we know how to solve
such ODEs. In particular, the equation for T (t) has the solution

T (t) = Ceα
2Kt

for some constant C.
The discussion now splits into 3 cases depending on the sign of K. The first two cases, as we

will see in Step II, only lead to the zero solution, so the only interesting one is the third one.
Case K = 0. In this case T (t) = C. Also, X ′′(x) = 0 for all x, so that X(x) is a linear function,

that is to say X(x) = Âx+ B̂ for some constants Â, B̂. Hence, u(x, t) = X(x)T (t) = Ax+B, where
A = ÂC, B = B̂C.

Case K > 0. This can also be written K = λ2 for some real number λ > 0. The first ODE
then becomes X ′′(x) = λ2X(x). The solution, as you know from previous courses, is X ′′(x) =

Âeλx + B̂e−λx for some constants Â, B̂. Hence, u(x, t) = eα
2λ2t(Aeλx + Be−λx), where A = ÂC,

B = B̂C.
Case K < 0. This can also be written K = −λ2 for some real number λ > 0. The first ODE in

(2.2) becomes X ′′(x) = −λ2X(x). The solution is X(x) = Â sin(λx) + B̂ cos(λx), where Â, B̂ are
arbitrary constants. Multiplying X(x) and T (t), and setting A = ÂC, B = B̂C, we obtain:

u(x, t) = e−α
2λ2t (A sin(λx) +B cos(λx)) (2.3)

for some constants A, B, and λ > 0.

Step II: Match (BC)

We now determine those constants A, B, and λ such that (2.3) satisfies (BC), that is to say
u(0, t) = u(L, t) = 0 for all t.

Case K = 0. In this case from u(0, t) = 0 we get B = 0, and then from u(L, t) = 0 we get
A = 0. So u(x, t) = 0.

Case K > 0. Since T (t) = eα
2λ2t is always non-zero, from u(0, t) = 0 we get A + B = 0, and

hence from u(L, t) = 0 we get A(eλL − e−λL) = 0. But then A = 0, and B = −A = 0. So, again,
u(x, t) = 0.

Case K < 0. We finally get to the case leading to interesting solutions. First, consider the
condition u(0, t) = 0. Since sin(0) = 0 and cos(0) = 1, this condition states that

e−α
2λ2tB = u(0, t) = 0.
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Thus B = 0. Next, consider the condition u(L, t) = 0. Since B = 0, we this condition states that

e−α
2λ2tA sin(λL) = u(L, t) = 0.

For A = 0 we just get the zero solution, so that we can assume that this is not the case. Therefore
we must have sin(λL) = 0. This happens precisely when

λ =
nπ

L
for some n ∈ Z.

We conclude:

Any solution of the form (2.1) that also satisfies (BC) is given by u(x, t) =
Aun(x, t) for some constant A and some n ∈ Z, where un(x, t) denotes the nth
sine building block, given by

un(x, t) = e−α
2(nπL )

2
t sin

(nπ
L
x
)
. (2.4)

(The only solution that came out of the other two cases, u(x, t) = 0, corresponds to A = 0, so
it is included.)

Remark 2.1. Because of the factor e−α
2(nπL )

2
t, we have that un(x, t)→ 0 as t→ +∞, for any x.

This says that the temperature along the whole rod tends to 0, which is of course what happens to
a real-world rod in the situation we are modeling.

Step III: Match (IC)

We aren’t yet able to match the initial condition (IC) for arbitrary functions φ(x). Indeed, looking
at the conclusion from Step II, we see that we have no more freedom apart from the choice of
constant A and integer n. Nonetheless, the nth sine building block un(x, t) does satisfy some
IBVP, namely the following:

(IBVP)n

 ut = α2uxx in Ω = (0, L)× (0,∞),
u(0, t) = u(L, t) = 0 for all t > 0,
u(x, 0) = sin

(
nπ
L x
)

for all x ∈ (0, L).

Notice what happened here: we hand-picked φ(x) to be equal to un(x, 0)! This trick might look
puzzling, but will turn out to be useful. At least it is clear that un(x, t) satisfies this IBVP.

Now we will use the superposition principle to construct solutions of the original IBVP for a
much larger class of initial conditions. The main ingredient is the superposition principle. The
following is true, where a and b are arbitrary constants:

• If v and w are solutions of (PDE), then so is u = av + bw.

• If v and w both satisfy (BC), then so does u = av + bw.

• If v(x, 0) = φ(x) and w(x, 0) = ψ(x), then the function u = av + bw satisfies u(x, 0) =
aφ(x) + bψ(x).
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Here the first point is just a special case of the superposition principle from Lecture 1 (note that
our PDE is homogeneous!). The second and third points are obvious.

Using these three points together with the fact that un(x, t) is the solution of (IBVP)n, we see
that for any constants a1 and a2, the function

a1u1(x, t) + a2u2(x, t)

is the solution of (IBVP) with φ(x) = a1 sin
(
πx
L

)
+ a2 sin

(
2πx
L

)
. Repeating this any number of

times, the following general formula is obtained:

Let α, L > 0, a1, . . . , aN be constants. The solution of the IBVP
ut = α2uxx in Ω = (0, L)× (0,∞), (PDE)
u(0, t) = u(L, t) = 0 for all t > 0, (BC)

u(x, 0) =
∑N
n=1 an sin

(
nπx
L

)
for all x ∈ (0, L) (IC)

is given by

u(x, t) =

N∑
n=1

anun(x, t) =

N∑
n=1

ane
−α2(nπL )

2
t sin

(nπ
L
x
)

This solution is somewhat limited since it only works for initial conditions of a very specific
form: it has to be a linear combination of sine functions. However, we will see later that with some
work, this leads to a much more general class of initial conditions.
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