
Analysis III for D-BAUG, Fall 2017 — Lecture 5

Lecturer: Alex Sisto (sisto@math.ethz.ch)∗

0 Recall from last time:

Last time we finally managed to solve our three IBVPs involving the one-dimensional heat equation
with general initial conditions. Three key methods were used:

• Separation of variables: We used the Ansatz u(x, t) = X(x)T (t) to find solutions for
specific initial conditions (sines and cosines)

• Superposition principle: Taking linear combinations of those solutions allowed us to handle
more complicated initial conditions (linear combinations of sines and cosines)

• Fourier series: Finally we used the theory of Fourier series to show that this actually covers
the general case, if we allow for infinite linear combinations of sines and cosines.

We now leave the heat equation, and instead focus on the one-dimensional wave equation,
which is the key example of a hyperbolic PDE. The above techniques again come in handy when
solving certain IBVPs associated with the wave equation.

1 Vibrations of a finite string

Let u(x, t) denote the vertical displacement of a string from its rest position at time t and horizontal
location x.
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u(x, t)

x

∗These notes were originally written by Menny Akka and edited by Martin Larsson. Some material was also taken
from Alessandra Iozzi’s notes.
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The wave equation describes how the string moves over time:

utt = c2uxx,

where c > 0 is a constant. The constant c turns out to have a meaning as the speed of propagation
of the wave. We will discuss this later on.

For now, let’s think about why this PDE makes sense as a model for the movement of a fric-
tionless string. In fact it is a simplified model in which points on the string only move vertically.
Hence, utt(x0, t0) is the acceleration of the string at location x0 and time t0. By Newton’s second
law, this is proportional to the force acting on the string at that point. The wave equation therefore
tells us that the force acting on the string at point x0 and time t0 is proportional to the second
derivative uxx(x0, t0). This is a measure of the convexity of the string at that point:

0 L

In particular, if uxx(x0, t0) is positive, there is a net upward force acting on the string at the point
x0. If uxx(x0, t0) is negative, there is a net downward force acting on the string at the point x0.
The equation can be derived by thinking of the string as a chain of many weights connected by
very short springs, and thinking about which direction each spring is pulling towards. If there is no
change in direction (the case uxx = 0) all forces act along the same line and they cancel out, while
a non-zero second derivative gives rise to changes in direction and non-cancelling forces.

We will solve the following IBVP, which models the vibrations of a finite string of length L with
fixed endpoints and given initial shape and velocity:

Find u = u(x, t) such that

(1)


utt = c2uxx in Ω = (0, L)× (0,∞), (PDE)

u(0, t) = u(L, t) = 0 for all t > 0, (BC)

u(x, 0) = f(x)

ut(x, 0) = g(x)
for all x ∈ (0, L). (IC)

Here c > 0 and L > 0 are given constants, and f(x) and g(x) are given functions.

Here f(x) represents the initial shape of the string, while g(x) represents the initial velocity.
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2 Solving the IBVP

Let us now solve the above IBVP using the three techniques we have developed so far: separation
of variables, superposition principle, and Fourier series. In a first step, we simplify the problem
by solving two separate IBVPs, one with zero initial shape f(x), and one with zero initial velocity
g(x):

(1a)


vtt = c2vxx in Ω = (0, L)× (0,∞), (PDE)

v(0, t) = v(L, t) = 0 for all t > 0, (BC)

v(x, 0) = 0

vt(x, 0) = g(x)
for all x ∈ (0, L). (IC)

and

(1b)


wtt = c2wxx in Ω = (0, L)× (0,∞), (PDE)

w(0, t) = w(L, t) = 0 for all t > 0, (BC)

w(x, 0) = f(x)

wt(x, 0) = 0
for all x ∈ (0, L). (IC)

Once we have a solution v(x, t) of IBVP (a) and a solution w(x, t) of IBVP (b), then the superpo-
sition principle implies that the function

u(x, t) = v(x, t) + w(x, t)

is a solution of the original IBVP (1).

Solving IBVP (a). We proceed as we did with the heat equation. Consider the Ansatz v(x, t) =
X(x)T (t) and insert this into the PDE to obtain

X(x)T ′′(t) = c2X ′′(x)T (t).

Rearranging this gives
T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
,

which must be equal to some constant K. Let’s think about whether K should be positive or
negative.

• K = 0: We obtain the equation X ′′(x) = 0, which implies X(x) = A+Bx for some constants
A and B. In order to match (BC), we must have A = B = 0. Thus we end up only with the
zero solution.

• K = λ2 > 0, where λ > 0: In this case we obtain the equation X ′′(x) = λ2X(x). Its solution
is

X(x) = Aeλx +Be−λx

for some constants A and B. To match (BC) we need A = −B. Moreover, we need X(L) =
A · (eλL − e−λL) = 0, which gives A = 0. Again, we only obtain the zero solution.
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• K = −λ2 < 0, where λ > 0, is now the only remaining possibility, and the one that will yield
interesting solutions. We obtain the two ODEs

X ′′(x) = −λ2X(x) and T ′′(t) = −c2λ2T (t),

whose solutions are

X(x) = A sin(λx) +B cos(λx) and T (t) = C sin(cλt) +D cos(cλt)

for some constants A,B,C,D. To match (BC) we must have X(0) = X(L) = 0 (unless
C = D = 0, but this gives the zero solution), which gives B = 0 and λ = nπ

L for some positive
integer n (or A = 0 and, again, the zero solution). To match the first (IC) we must have
T (0) = 0, which gives D = 0.

In conclusion, we obtain

v(x, t) = AC sin
(nπ
L
x
)

sin
(nπc
L
t
)
.

If we choose AC = L
nπc , we see that this function solves IBVP (a) with initial condition g(x) =

sin
(
nπ
L x
)
. For general initial condition g(x), we develop g(x) as a Fourier sine series,

g(x) =

∞∑
n=1

cn sin
(nπ
L
x
)
.

The superposition principle then implies that the solution of IBVP (a) with this initial condition
is given by

v(x, t) =

∞∑
n=1

cn
L

nπc
sin
(nπ
L
x
)

sin
(nπc
L
t
)
.

Solving IBVP (b). This is very similar. Just as before, we use the Ansatz w(x, t) = X(x)T (t).
With the same reasoning using (BC) it follows that

X(x) = A sin
(nπ
L
x
)

and T (t) = C sin
(nπc
L
t
)

+D cos
(nπc
L
t
)

for some constants A,C,D and some n ∈ Z. Now, however, the (IC) is different. In particular, the
second (IC) is wt(x, 0) = 0, which means that we need T ′(0) = 0. Since T ′(0) = C · nπcL , we see
that C = 0. Therefore (with A = D = 1) we find that

w(x, t) = sin
(nπ
L
x
)

cos
(nπc
L
t
)

solves IBVP (b) with initial condition f(x) = sin
(
nπ
L x
)
. Developing f(x) a Fourier sine series,

f(x) =

∞∑
n=1

bn sin
(nπ
L
x
)
,

the superposition principle gives the corresponding solution of IBVP (b):

w(x, t) =

∞∑
n=1

bn sin
(nπ
L
x
)

cos
(nπc
L
t
)
.
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Combining the two solutions. One final application of the superposition principle lets us
combine the solutions of IBVPs (a) and (b):

The general (physical) solution of IBVP (1) for vibrations of a finite string with
fixed endpoints,

utt = c2uxx in Ω = (0, L)× (0,∞), (PDE)

u(0, t) = u(L, t) = 0 for all t > 0, (BC)

u(x, 0) = f(x)

ut(x, 0) = g(x)
for all x ∈ (0, L). (IC)

is given by

u(x, t) =
∞∑
n=1

sin
(nπ
L
x
)(

bn cos
(nπc
L
t
)

+
cnL

nπc
sin
(nπc
L
t
))

where

bn =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx

cn =
2

L

∫ L

0

g(x) sin
(nπ
L
x
)
dx

Remark 2.1. At first glance this might look similar to the solutions of the IBVPs associated with
the heat equation. However, the solutions are very different. As a function of t, the solutions
keeps oscillate like sine / cosine, without subsiding (remember that we have not taken friction into
account!). The heat equation, on the other hand, exhibits exponential damping in time.

3 Interpretation of c

It was mentioned above that the constant c can be interpreted as the speed of propagation. This
interpretation will become very clear later on when we consider vibrations of a string of infinite
length. However, already in the context of IBVP (1) above, we can get an idea of why this
interpretation is valid.

To make things simple, let L = π and suppose we are interested in (IC) given by f(x) = sin(x)
and g(x) = 0. From the previous section, the solution is then given by

u(x, t) = sin(x) sin(ct)

By a standard trigonometric identity (which we in fact used last time), this can be written as

u(x, t) =
1

2
sin(x− ct) +

1

2
sin(x+ ct).
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Now, for any function h(x), the graph of the function h(x− a) looks exactly like the graph of h(x),
just shifted to the right by a distance a. Therefore, u(x, t) can be seen as the superposition of two
fixed waveforms that move in opposite directions by a distance c per unit time t. In other words,
u(x, t) is superposition of waveforms that propagate at constant speed c. The figure below shows
the graphs of sin(x) and sin(x− ct).

0 L = πct

sin(x)

sin(x− ct)
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