Lösung - Serie 13

MC-Aufgaben (Online-Abgabe)

- 1. Wenn man zwei beliebig oft differenzierbare Funktionen addiert, dann werden ihre Taylorreihen an einem Punkt x_0
- $\sqrt{}$ (a) addient.
 - (b) addiert, aber man erhält die Taylorreihe an der Stelle $2x_0$.
 - (c) addiert, aber man erhält die Taylorreihe an der Stelle x_0^2 .
 - (d) es kann keine allgemein gültige Aussage getroffen werden.

Die Taylorreihe der Summe f+g zweier Funktionen ist $\sum_{k=1}^{\infty} \frac{(f+g)^{(k)}(x-x_0)}{k!}$. Wegen $(f+g)^{(k)}(x-x_0)=f^{(k)}(x-x_0)+g^{(k)}(x-x_0)$ ist die erste Antwort die richtige.

- 2. Der Konvergenzradius der Reihe $\sum\limits_{k=0}^{\infty}2^kx^k$ ist
- (a) 0
- $\sqrt{}$ (b) $\frac{1}{2}$
 - (c) 2
 - (d) ∞

Nach dem Quotientenkriterium ist der Konvergenzradius $\lim_{k\to\infty}\frac{2^k}{2^{k+1}}=\lim_{k\to\infty}\frac{1}{2}=\frac{1}{2}$. Also ist (b) richtig.

3. Es sei f die Funktion mit

$$f(x) = \frac{e^x}{x+1}.$$

Welches der folgende Polynome ist das zweite Taylor-Polynom $P_2(x)$ im Punkt $x_0=0$?

$$\sqrt{(a)} 1 + \frac{x^2}{2}$$

(b)
$$1 + x + \frac{x^2}{2}$$

(c)
$$1 + x + x^2$$

(d)
$$1 + x^2$$

Nach Definition ist mit $x_0 = 0$ das zweite Taylor-Polynom

$$T_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2.$$

Es ist $f(0)=rac{e^0}{1}=1$, sodass alle vier Polynome möglich sind. Es ist mit Quotientenregel

$$f'(x) = \frac{e^x(x+1) - e^x}{(x+1)^2} = \frac{e^x x}{(x+1)^2},$$

und damit f'(0)=0 und es bleiben noch zwei Kandidaten. Mit Kettenregel und wieder mit Quotientenregel gilt

$$f''(x) = \frac{(e^x x)'(x+1)^2 - e^x x 2(x+1)}{(x+1)^4} = \frac{(e^x + xe^x)(x+1)^2 - e^x x 2(x+1)}{(x+1)^4}.$$

Setzen wir direkt 0 ein, so ist f''(0) = 1. Also $T_2(x) = 1 + \frac{x^2}{2}$.

4. Die Entwicklung der Funktion $f(x)=\frac{1}{x}$ als Potenzreihe um $x_0=1$ lautet

$$(a) \quad \sum_{k=0}^{\infty} (x-1)^k$$

(b)
$$\sum_{k=0}^{\infty} x^k$$

$$\sqrt{(c)} \sum_{k=0}^{\infty} (-1)^k (x-1)^k$$

(d)
$$\sum_{k=1}^{\infty} (-1)^k (x-1)^{k-1}$$

Dank der geometrischen Reihe haben wir für |x-1| < 1

$$\frac{1}{x} = \frac{1}{1 - (1 - x)} = 1 + (1 - x) + (1 - x)^2 + (1 - x)^3 + \dots = 0$$

$$= 1 - (x - 1) + (x - 1)^{2} - (x - 1)^{3} + \dots = \sum_{k=0}^{\infty} (-1)^{k} (x - 1)^{k}.$$

Die Reihe konvergliert für |x-1| < 1; ihr Konvergenzintervall ist also (0;2).

5. In welchem Bereich konvergiert die Potenzreihe $\sum_{k=1}^{\infty} \frac{k^3(-1)^{k+1}(2x-1)^{2k}}{5^{2k}}$?

- (a) (-1,2)
- (b) (-4,5)
- (c) (-2,2)

$$\sqrt{\ }$$
 (d) $(-2,3)$

Es sei $z = (2x-1)^2$. Aus dem Quotientenkriterium folgt, dass der Konvergenzradius bezüglich z gleich

$$\left| \lim_{k \to \infty} \frac{k^3 (-1)^{k+1} 5^{2k+2}}{(k+1)^3 (-1)^{k+2} 5^{2k}} \right| = \left| \lim_{k \to \infty} \frac{25k^3}{(k+1)^3} \right| = 25$$

ist. Folglich konvergiert die Potenzreihe genau dann, wenn $z=(2x-1)^2<25$ ist, also wenn -2< x<3 gilt. Um den Beweis abzuschließen reicht es zu zeigen, dass die Potenzreihe für $x\in\{-2,3\}$ nicht konvergiert. Dies folgt aber daraus, dass die Reihe $\sum_{k=1}^{\infty}(-1)^{k+1}k^3$ divergiert.

Übungsaufgaben

6. Berechne die Taylorreihe um $x_0 = 0$ der folgenden Funktionen f.

a)
$$f(x) = \sinh(x)$$
;

b)
$$f(x) = x^2 \ln(1 + x^4)$$
.

Lösung:

a) Wir wissen

$$(\sinh(x))' = \cosh(x), \quad (\cosh(x))' = \sinh(x)$$

also gilt $(\sinh(x))'' = \sinh(x)$. Allgemeiner gilt $(\sinh(x))^{(2k)} = \sinh(x)$ für alle $k \geq 0$ und $(\sinh(x))^{(2k-1)} = \cosh(x)$ für alle $k \geq 1$.

Weil $\sinh(0)=0$ und $\cosh(0)=1$, überleben in der Taylorreihe von $\sinh(x)$ nur die ungeraden Terme. Tatsächlich gilt

$$\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2k-1}}{(2k-1)!} + \dots$$

b) Die Taylorreihe von $\ln(1+x)$ bzgl. des Punkts x=0 lautet

$$\ln(1+x) = \sum_{k=0}^{\infty} (-1)^k \cdot \frac{x^{k+1}}{k+1}.$$

Daraus folgt

$$\ln(1+x^4) = \sum_{k=0}^{\infty} (-1)^k \cdot \frac{x^{4k+4}}{k+1}.$$

Für $x^2 \ln(1+x^4)$ ergibt sich also die Reihenentwicklung

$$x^{2}\ln(1+x^{4}) = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1} x^{4k+6}.$$

7. Bestimme die Taylorreihe um $x_0 = 0$ der Funktion

$$x \longmapsto \int_0^x \frac{1 - e^{-t^2}}{t^2} \mathrm{d}t.$$

Lösung:

Wegen
$$e^y = 1 + \frac{y}{1!} + \frac{y^2}{2!} + \dots = \sum_{n=0}^{\infty} \frac{y^n}{n!}$$
 für alle $y \in \mathbb{R}$ gilt $e^{-t^2} = \sum_{n=0}^{\infty} \frac{(-t^2)^n}{n!}$. Es folgt
$$\frac{1 - e^{-t^2}}{t^2} = \frac{1 - \sum_{n=0}^{\infty} \frac{(-t^2)^n}{n!}}{t^2} = \frac{1 - \left(1 - t^2 + \frac{t^4}{2} - \frac{t^6}{6} + \dots\right)}{t^2}$$
$$= 1 - \frac{t^2}{2} + \frac{t^4}{6} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^{n-1} t^{2(n-1)}}{n!}.$$

Gliedweise Integration liefert

$$\int_0^x \frac{1 - e^{-t^2}}{t^2} dt = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n!} \int_0^x t^{2(n-1)} dt = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n!} \left(\frac{x^{2n-1}}{2n-1}\right)$$
$$= \sum_{n=1}^\infty \frac{(-1)^{n-1}}{(2n-1)n!} x^{2n-1}.$$

8. Bestimme die Koeffizienten c_k der Reihenentwicklung

$$e^x \cos x = \sum_{k=0}^{\infty} c_k x^k.$$

Hinweis: Man setze $\cos x = \frac{1}{2}(e^{ix} + e^{-ix})$ ein, multipliziere aus und verwende die Exponentialreihe.

Lösung:

Mit $\cos x = \operatorname{Re} e^{ix}$ (für $x \in \mathbb{R}$) erhält man

$$e^{x} \cos x = e^{x} \operatorname{Re} e^{ix} = \operatorname{Re} e^{(1+i)x} = \operatorname{Re} \sum_{k=0}^{\infty} \frac{(1+i)^{k}}{k!} x^{k}$$

$$= \operatorname{Re} \sum_{k=0}^{\infty} \frac{(\sqrt{2} e^{i\pi/4})^{k}}{k!} x^{k} = \sum_{k=0}^{\infty} \frac{2^{k/2}}{k!} \operatorname{Re} (e^{ik\pi/4}) x^{k} = \sum_{k=0}^{\infty} \underbrace{\frac{2^{k/2}}{k!} \cos(k\pi/4)}_{= C_{k}} x^{k}.$$

Man beachte noch

$$\cos(k\pi/4) = \begin{cases} 1 & k \equiv 0 \pmod{8} \\ \frac{1}{\sqrt{2}} & k \equiv 1,7 \pmod{8} \\ 0 & k \equiv 2,6 \pmod{8} \\ -\frac{1}{\sqrt{2}} & k \equiv 3,5 \pmod{8} \\ -1 & k \equiv 4 \pmod{8} \end{cases}$$

Also:

$$c_k = \frac{1}{k!} \cdot \begin{cases} 2^{k/2} & k \equiv 0 \pmod{8} \\ 2^{(k-1)/2} & k \equiv 1,7 \pmod{8} \\ 0 & k \equiv 2,6 \pmod{8} \\ -2^{(k-1)/2} & k \equiv 3,5 \pmod{8} \\ -2^{k/2} & k \equiv 4 \pmod{8}. \end{cases}$$

9. Entwicke die Funktion

$$f(x) = \frac{2}{1 - x + x^2 - x^3}$$

in eine Potenzreihe $\sum\limits_{n=0}^{\infty}a_nx^n$ und bestimme deren Konvergenzradius.

Hinweis: Führe zunächst eine Partialbruchzerlegung von f(x) durch.

Lösung: Wir stellen fest, dass wir den Nenner der gegebenen Funktion faktorisieren können als

$$1 - x + x^2 - x^3 = (1 - x)(1 + x^2).$$

Wir machen daher für die Partialbruchzerlegung den Ansatz

$$f(x) = \frac{2}{(1-x)(1+x^2)} = \frac{A}{1-x} + \frac{Bx+C}{1+x^2}.$$

Multiplikation mit dem Hauptnenner und Sortieren nach Potenzen von x liefert

$$2 = \underbrace{(A-B)}_{\stackrel{\perp}{=}0} x^2 + \underbrace{(B-C)}_{\stackrel{\perp}{=}0} x + \underbrace{(A+C)}_{\stackrel{\perp}{=}2}.$$

Durch einen Koeffizientenvergleich zwischen linker und rechter Seite finden wir A=B=C=1. Die gesuchte Partialbruchzerlegung lautet daher

$$f(x) = \frac{1}{1-x} + \frac{1+x}{1+x^2}.$$

Die geometrische Reihe liefert

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots = (1+x)(1+x^2+x^4+x^6+\dots)$$
$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = 1 - x^2 + x^4 - x^6 + \dots$$

und daher

$$f(x) = (1+x)(1+x^2+x^4+x^6+\cdots) + (1+x)(1-x^2+x^4-x^6+\cdots)$$

$$= (1+x)(2+2x^4+2x^8+2x^{12}+\cdots)$$

$$= (1+x)\sum_{k=0}^{\infty} 2x^{4k} = \sum_{k=0}^{\infty} (2x^{4k}+2x^{4k+1}) = \sum_{n=0}^{\infty} a_n x^n$$

mit

$$a_n = \begin{cases} 2 & \text{für } n = 4k \text{ und } n = 4k+1, \ k \in \mathbb{Z}, \\ 0 & \text{sonst.} \end{cases}$$

Die Konvergenzradius der Potenzreihendarstellung von f(x) ist identisch mit dem Konvergenzradius der Reihe $\sum\limits_{k=0}^{\infty}2x^{4k}=\sum\limits_{k=0}^{\infty}2(x^4)^k$ im Zwischenergebnis. (Da eine Potenzreihe innerhalb ihres Konvergenzkreises absolut konvergiert, hat der Vorfaktor (1+x) keinen Einfluss.) Um den Konvergenzradius letzterer Reihe zu bestimmen, substituieren wir $x^4=:y$ und erhalten damit die Reihe $\sum\limits_{k=0}^{\infty}2y^k$, deren Konvergenzradius offensichtlich 1 beträgt. Die Potenzreihe für f(x) konvergiert also, falls $|x^4|<1$ \Leftrightarrow |x|<1. Ihr Konvergenzradius beträgt demnach ebenfalls 1.

10. Berechne für die folgenden Potenzreihen den Konvergenzbereich $(-\varrho,\varrho)$.

$$\mathbf{a}) \sum_{n=1}^{\infty} \frac{n!}{n^n} x^n;$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{5^{n^2} n^n} x^n;$$

c)
$$\sum_{n=1}^{\infty} \frac{9^n}{n} x^{2n}$$
;

d)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n}} (x+3)^n$$
.

Lösung:

a) Wir benutzen die Definition des Konvergenzradius

$$\varrho = \lim_{n \to \infty} \left(\frac{n!}{n^n} / \frac{(n+1)!}{(n+1)^{n+1}} \right) = \lim_{n \to \infty} \left(\frac{n!}{n^n} / \frac{n!}{(n+1)^n} \right) = \lim_{n \to \infty} \frac{(n+1)^n}{n^n}$$
$$= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Also ist der Konvergenzbereich gegeben durch (-e, e).

b) Wir setzen die Koeffizienten $a_n = \frac{(-1)^n n!}{5^{n^2} n^n}$ in die Formel für den Konvergenzradius ein und

$$\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{\frac{(-1)^n n!}{5^{n^2} n^n}}{\frac{(-1)^{n+1} (n+1)!}{5^{(n+1)^2} (n+1)^{n+1}}} \right| = \lim_{n \to \infty} \frac{\frac{n!}{n^n}}{\frac{(n+1)!}{(n+1)^{n+1}}} \frac{5^{(n+1)^2}}{5^{n^2}}$$

$$= e \lim_{n \to \infty} 5^{n^2 + 2n + 1 - n^2} = \infty.$$

Die Potenzreihe besitzt demnach den Konvergenzradius ∞ , konvergiert also für alle $x \in \mathbb{R}$.

c) Die Formel f\u00fcr den Konvergenzradius l\u00e4sst sich hier leider nicht direkt anwenden, da alle ungeraden Koeffizienten der Potenzreihe s\u00e4mtlich Null sind.

$$\sum_{n=1}^{\infty} \frac{9^n}{n} x^{2n} = 9x^2 + \frac{9^2}{2} x^4 + \cdots$$
$$= 0 \cdot x + 9x^2 + 0 \cdot x^3 + \frac{9^2}{2} x^4 + 0 \cdot x^5 + \cdots$$

Wir betrachten daher statt $\sum_{n=1}^{\infty} \frac{9^n}{n} x^{2n}$ zunächst die Potenzreihe $\sum_{n=1}^{\infty} \frac{9^n}{n} y^n$. Aus letzterer erhält man die ursprüngliche Potenzreihe zurück, indem man $y:=x^2$ einsetzt. Die Koeffizienten der neuen Potenzreihe lauten $a_n=\frac{9^n}{n}$. Damit erhalten wir für deren Konvergenzradius

$$\varrho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{9^n}{9^{n+1}} \cdot \frac{n+1}{n} = \frac{1}{9} \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{1} = \frac{1}{9}.$$

Die Ersatzreihe konvergiert also für $|y|<\frac{1}{9}.$ Wegen des Zusammenhangs $y=x^2$ ist dies genau dann der Fall, wenn $|x|<\frac{1}{3}.$ Also ist der Konvergenzbereich gegeben durch $(-\frac{1}{3},\frac{1}{3}).$

d) Der Konvergenzradius beträgt

$$\varrho=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=\lim_{n\to\infty}\frac{2^n}{\sqrt{n}}\cdot\frac{\sqrt{n+1}}{2^{n+1}}=\lim_{n\to\infty}\frac{1}{2}\sqrt{\frac{n+1}{n}}=\frac{1}{2}.$$

Da wir um den Punkt $x_0=3$ entwickeln konvergiert die Potenzreihe also sicher für

$$x \in (-3 - 1/2, -3 + 1/2) = (-\frac{7}{2}, -\frac{5}{2})$$