Schnellübung 4

Bemerkung: Diese Schnellübung wird am Mittwoch, dem 8. November 2017, während der Übungsstunde gelöst.

- 1. Ein Kreis vom Radius r rollt im Innern eines Kreises vom Radius R ab. Die Kurve $\vec{r}(t)$, die dabei ein fester Punkt P auf dem Rand des kleinen Kreises beschreibt, heisst Hypozykloide.
 - a) Bestimme $\vec{r}(t)$ allgemein (im Fall $r \leq R$).
 - **b)** Was ergibt sich im Spezialfall R = 4r?
 - c) Was ergibt sich im Spezialfall R = 2r?
- 2. Es sei

$$f(x) = nx^{n} + (n-1)x^{n-1} + \dots + 1,$$

$$g(x) = \ln(e^{x} - x)\ln(e^{x} - x^{2}) \cdot \dots \ln(e^{x} - x^{n}).$$

Zeige, dass gilt f(x) = O(g(x)) mit $x \to +\infty$ und g(x) = O(f(x)) mit $x \to +\infty$.

- **3.** Bestimmen Sie die Krümmungsfunktion $t\mapsto k(t)$ sowie die Evolute $t\mapsto \vec{z}(t)$ der kubischen Parabel $t\mapsto \vec{r}(t)=(t,t^3),\,t\in\mathbb{R}.$
 - **a)** Wo wird die Krümmung minimal oder maximal? (Beachten Sie hierbei das Vorzeichen.)
 - **b)** Wie verhält sich $\vec{z}(t)$ in der Nähe von t = 0?
- 4. Die Astroide ist durch folgende implizite Gleichung gegeben

$$x^{2/3} + y^{2/3} = 1.$$

Finde die Gleichung der Astroide in Polarkoordinaten (d.h. $\varrho=f(\varphi), \varphi\in[0,2\pi]$). Für welche Winkel $\varphi\in[0,2\pi]$ ist der Radius ϱ minimal?