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Disclaimer

Despite our effort to make these lecture notes coherent and error-free, typos and even mistakes do
slip in. We would greatly appreciate your help in finding them.
Special thanks go to my PhD student Alexander Smirnow for his great support in preparing this
material.
Please send your improvement suggestions to Alexander Smirnow at alexander.smirnow@bf.uzh.ch.

0 Introduction and Preliminaries

This first section is a brief summary of mathematical conventions and some ‘well-known’ results.
Please refer to this section first if you have trouble with the notation. It is intended to get everyone
on (roughly) the same page.
We fix a sort of standard in regard to how we communicate mathematical subjects. After all,
being rigorous in your thoughts and precise in your notation is half the maths. Most of the con-
cepts introduced here are fundamental and can be found in most of the introductory literature on
applied mathematics. For further material we suggest ‘Mathematik für Ingenieure und Naturwis-
senschaftler Band 2: Ein Lehr- und Arbeitsbuch für das Grundstudium’ by Lothar Papula.

0.1 Sets and quantifiers

In mathematics, we use a lot of symbols as a tool of presentation and abbreviation. Often the
meaning cannot be deduced from the symbol itself, thus it is always good to explain your notation.
Some symbols however are very strongly associated with a particular meaning, and changing them
would result in confusion. Let us start with two basic symbols you should already be familiar with:

• The symbol ∈ means ‘is element of’ or simply ‘in’. So x ∈ R means ‘the element x belongs
to the set R’ and is usually pronounced ‘x in R’. If we say ‘take x ∈ R’ we mean ‘take the
element x in the set R.

• The symbol ⊂ means ‘is subset of’. If we write ‘consider A ⊂ R’ we mean ‘consider the
subset A of R’. In this case, R is the superset of A.

We will use some conventional sets of numbers. Since we use these sets all the time, we agree on
certain symbols to denote these sets. Throughout this lecture, we will use the following notation.

• N = {1,2,3, . . . } denotes the set of natural numbers, or naturals.1

Note that N does not contain 0. If we include 0, we use the set

• N0 = {0}tN, the disjoint union of 0 and the natural numbers.2

N and N0 come in handy when we count something. A set with the ‘same size’ as N is called
countably infinite.3

Of course we are also interested in negative numbers. So a natural step would be to ‘mirror’ the
naturals onto the ‘negative side’:

1You might wonder what comes after ‘3’. The correct answer is ‘4’ and then ‘5’. After any n ∈ N there comes n + 1.
A mathematician might not be satisfies yet, but for us this definition is sufficient.

2Putting curly brackets around the 0 means that the element 0 is considered as a one-element set {0}.
3To be more precise, if there is a bijection from the set to N.
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0 Introduction and Preliminaries

• Z = N0t{−n |n ∈ N} = N0t−N, the set of all integer numbers or integers.

Note that we may refer to N as the set of all positive integers, and N0 as the set of all non-negative
integers. In general, ‘positive’ means ‘strictly positive’ and ‘non-negative’ includes the 0. The
symbol −N is an abbreviation for {−n |n ∈N} and means that each element in N is multiplied by −1.
More generally, we define for a set X the set cX = {cx | x ∈ X}. Elements from N, N0, and Z are often
denoted by the symbols j,k, `,n,m. Sometimes, especially in programming, the letter i denotes a
running variable in N. We will try and avoid this, since i will denote the complex unit.

The next set contains all the fractions,

• Q =
{

p
q

∣∣∣ p ∈ Z , q ∈ N
}
, the set of rational numbers, or rationals.

We often use symbols q,r to denote elements of Q.

The following set is a little bit more difficult to define in a rigorous but concise manor without many
prerequisites. For our purposes we are satisfied with the following definition,

• R = {irrational numbers}tQ, the set of real numbers, or reals.

Irrational numbers are numbers that cannot be written as a fraction. So in particular,
√

2,π,e and
so on are contained in R (but not in Q). Since R does not have any ‘gaps’4 we can conveniently use
the interval notation. Intervals are special subsets of R, and the numbers a,b ∈ R with a ≤ b are the
boundaries of the intervals:

• [a,b] = {x ∈ R |a ≤ x ≤ b} is called a closed interval,
• (a,b) = {x ∈ R |a < x < b} is called an open interval,

The half-open intervals (a,b] and [a,b) are analogously defined. Furthermore, we will sometimes
use the notation R = (−∞,∞) and also R≥0 = {x ∈ R | x ≥ 0} = [0,∞), R>0 = {x ∈ R | x > 0} = (0,∞)
and so on. We will usually use the symbols x,y, s, t to denote real numbers.

The last set we consider here, is the set of complex numbers. For this we introduce the imaginary
unit i =

√
−1 and finish this brief recapitulation with

• C = {x + iy | x,y ∈ R}, the set of all complex numbers.

We will often use z,w to denote complex numbers. As you might know, we can think of C as the
product space R×R = R2. Look at the following figure and find an argument why this is justified.

(1) Visualisation of the plane R2 (2) Visualisation of the ‘plane’ C

Figure 0.1: Visualisation of R2 and C as planes

The real and the imaginary part of a complex number z = x1 + ix2 ∈C are denoted byRz = Re(z) = x1
and Iz = Im(z) = x2, respectively.

4Imagine that we filled all uncountably-infinite gaps in Q with irrational numbers.
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0.2 Sequences, sums, and series

We end this subsection with the introduction of quantifiers. These are symbols that allow us to
abbreviate certain statements. However, these symbols are not a substitute for clear, explaining
sentences and they should not be used outside formulae.

Let A(x) be a statement about some x ∈ R.

• The symbol ∀ stands for ‘for all’. So if we write ∀x ∈ R : A(x), it means ‘for all x ∈ R the
statement A(x) holds’.

• The symbol ∃ stands for ‘there exists’. Writing ∃x ∈ R : A(x) is understood as ‘there exists
(at least one) x ∈ R such that the statement A(x) holds’.

• We use ∃! if we mean ‘there exists exactly one’.
• The symbol @ stands for ‘there does not exist any’. So @x ∈ R : A(x) means ‘there is no x ∈ R

such that A(x) is satisfied’.

These symbols may seem very handy, and in fact, they sometimes are. Be careful though, the order
of use is important, since ∀x ∈R∃y ∈R : A(x,y) is, in general, not the same as ∃y ∈R∀x ∈R : A(x,y).
For example5, let X be the set of students at the ETH and let Y be the set of all offered lectures. For
x ∈ X and y ∈ Y let A(x,y) be the statement: ‘student x is interested in lecture y’. Then ‘∀x ∈ X ∃y ∈
Y : A(x,y)’ is (hopefully) true. But ‘∃y ∈ Y ∀x ∈ X : A(x,y)’ is (most likely) not true. What do you
think?

0.2 Sequences, sums, and series

A collection or family of enumerated objects is called a sequence. The objects can be anything:
numbers, vectors, functions, letters, houses on a particular road, results of coin tosses, and so on.
The length of a sequence is defined by the number of elements in that sequence and it can be finite
or infinite. Usually, we use N (countably infinite) or a subset {1, . . . ,N} ⊂ N (finite) which is an
abbreviation for {n ∈ N |N ∈ N,n ≤ N} to enumerate a sequence. We write

(an)n∈N to denote the sequence (a1,a2,a3, ...) ,

where an could be numbers, vectors, and so on, you know that already. In more generality, one can
use an index set I instead of N to write (an)n∈I . You can also write (an)N

n=1 if your indeces are in the
set {1, . . . ,N} ⊂ N.

Exercise 0.1 For example, you might know the Fibonacci sequence,

(0,1,1,2,3,5,8,13,21,34, ...) .

Define a1 = 0, a2 = 1 and then find a recursive rule to define the whole sequence. This means define
any an for n ≥ 3 using the previous terms of the sequence. In this case, you only need the two
previous terms.

Note, a sequence of elements from a set X is a subset of X. So for example, the Fibonacci sequence
(an)n∈N is a subset of N, since each an ∈ N. If we want to emphasise that the sequence should be
considered as a subset, we sometimes use curly brackets {an}n∈N ⊂ N. Of course this is not true
for elements of different sets, just as you cannot compare apples and oranges (except maybe if you
chose ‘fruits’ as your set).

A sequence of functions ( fn)n∈N from a set X to R is said to converge pointwise, if for each x ∈ X,

lim
n→∞

fn(x) = f (x) .

5Taken from ‘Analysis I und II (2016/2017)’, Manfred Einsiedler, Andreas Wieser, Beispiel 1.8.
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0 Introduction and Preliminaries

With this notion we consider the limit for each x separately. In particular, we have no control over
how ‘fast’ the functions converge for a given x. To consider all x ∈ X at the same time, we introduce
the notion of uniform convergence,

lim
n→∞

sup
x∈X
| fn(x)− f (x)| = 0 .

Here, we are interested not only in the difference of one certain value x, but in the largest such
difference of all x ∈ X. It is clear that uniform convergence implies pointwise convergence. The
other direction is not true in general. A classic example is the following.

Example 0.2 Consider for n ∈ N the sequence of functions fn : [0,1]→ [0,1] defined by x 7→ xn.
Note that the sequence converges pointwise to the function

f : [0,1]→ [0,1] with x 7→

0 if x ∈ [0,1) ,
1 if x = 1 .

Indeed, for x = 1 this is true, since 1n = 1 for all n ∈ N. For x ∈ [0,1) and a given bound ε > 0 we
can choose n ≥ N(ε, x) =

⌈ logε
log x

⌉
to ensure that | fn(x)− f (x)| = |xn| = xn < ε. Hence, the bound N(x, ε)

depends on ε and x.
To show that the sequence does not converge uniformly, we have to show that there is no such value
N(ε) such that it converges for all x ∈ [0,1] at the same time. And indeed, for any given N and ε we
simply choose x > ε

1
N and we get | fn(x)− f (x)| > ε.

When we want to add countably many elements together we use the symbol
∑

(capital sigma). The
summation of finitely many quantities is called a sum and we use running variables from the finite
set {1, . . . ,N}, ∑

n∈{1,...,N}

an =

N∑
n=1

an = a1 + a2 + . . .+ aN .

Summation over infinitely many quantities is called a series and we usually use elements in N as
running variables, ∑

n∈N

an =

∞∑
n=1

an = lim
N→∞

N∑
n=1

an = a1 + a2 + a3 + . . . .

One has to understand that this notation does not guaranty that there is actually a value for this
‘thing’. However, if the limit exists, we say the series is convergent or summable and we call the
limit the sum of the series. If it does not, we can sometimes assign values like +∞,−∞, but other
times it is just not possible, as for example

∑∞
n=0(−1)n.6

A series is called absolutely summable if the series of the absolute values of its summands is sum-
mable.

Exercise 0.3 1. Show the Gauß summation formula (kleiner Gauß)

N∑
n=1

n =
N(N + 1)

2
.

2. Furthermore derive
N∑

n=1

2n = N(N + 1) and
N∑

n=1

2n−1 = N2 .

6Maybe we should set it equal to 1
2 , what do you think? https://www.youtube.com/watch?v=PCu_BNNI5x4
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0.3 Functions and graphs

3. Show that the alternating harmonic series
∞∑

k=1

(−1)k+1

k

converges to log2. Explain why it is not absolutely convergent.

0.3 Functions and graphs

Let us now focus our attention on functions. Functions are a key part of a lot of mathematics. The
basic principle is quite simple and we will first explain it in words:

• We say f is a function (or map) from a set X to a set Y and we write f : X → Y if f is an
assignment rule, which assigns to each element in X a unique element y = f (x) ∈ Y .

The set X, on which the function is defined, is called domain and the set Y is called co-domain7.
Note that a map does not necessarily lead to all the elements in the co-domain. We can however
restrict the co-domain to only those values y ∈ Y such that there is an x ∈ X with f (x) = y.

• The image of the function f : X→ Y is denoted by f (X) and defined as

f (X) = {y ∈ Y |∃x ∈ X : y = f (x)} ⊆ Y .

Do not get confused by this notation: the function f is only defined on elements x ∈ X, it does not
take sets as arguments. The notation f (X) is just an abbreviation for the set we defined above.

Finally, we introduce the restriction of a function to a subset of its domain.

• The restriction of a function f : X → Y to a subset A ⊂ X is denoted by f |A : A→ Y and
defined point-wise as f |A(x) = f (x), for x ∈ A.

Important Do not think of functions just as formulae, as for example y = x2. Keep the context of
a domain and a co-domain in mind! If you define a function, then

1. give it a name, for example f ,
2. choose a domain and a co-domain and indicate your choice as f : X→ Y ,
3. finally, indicate that x is mapped to f (x), or x 7→ f (x), where f (x) can be an explicit formula.

Note that if we want to indicate that elements are mapped, we use the arrow 7→, and only between
sets we use→. For example, f : R→ R, x 7→ x2 is a correct definition of ‘y = x2’. In particular, the
notation ‘y = x2’ might tempt you to think of the function as its graph. In fact, this is sometimes
helpful, but we need to be careful to differentiate between a function and its graph.

• The graph Γ of a function f : R→ R is a subset of R2. It is given by

Γ =
{
(x, f (x)) ∈ R2 | x ∈ R

}
=

{
(x1, x2) ∈ R2 | f (x1) = x2

}
⊂ R2 .

We deliberately use the notation (x1, x2) rather than (x,y), since it is easier to generalise. For ex-
ample, x = (x1, . . . xn) ∈Rn is simpler than coming up with letters or symbols x = (a,b, . . . ,z,�,?, ).

Another important note f : X→ Y is a function, but f (x) is not, f (x) is the function f evaluated
at the point x and thus, it is just an element (or value) in Y . Do not call f (x) a function, since it is not!

If you do not see the importance of stating the domain and co-domain, consider the following short
exercise, in which you will find that two seemingly equal functions actually differ quit a lot, for
example with regard to the existence of an inverse.

7In German we say ‘Definitionsbereich’ and ‘Wertebereich’, respectively.
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0 Introduction and Preliminaries

Exercise 0.4 Let f :R→R≥0, x 7→ x2 and g :R≥0→R≥0, x 7→ x2 be two functions. You might know
that the square-root function

√
· : R≥0→ R≥0 is the inverse of g. Explain why it is not the inverse

of f . Argue that f does not have an inverse. What about f |R≥0 ?

Example 0.5 Let us introduce some useful functions.

1. Let | · | : R→ R≥0 be defined by |x| =

x if x ≥ 0
−x if x < 0

. The number |x| is called the absolute

value of x.

2. We call d·e : R→ Z defined as dxe = min{n ∈ Z | x ≤ n} the ceiling function. For any x ∈ R it gives
you the smallest integer greater than or equal to x.
Similarly, we call b·c : R→ Z defined as bxc = max{n ∈ Z | x ≥ n} the floor function. It gives the
largest integer less than or equal to x.

3. We will often talk about the length of an interval [a,b] ⊂ R. The length can be considered as a
function λ that maps subsets of R to R. Let R = {[a,b] ⊂ R |a,b ∈ R, a ≤ b} be the set of all closed,
non-empty intervals. Then λ : R→ R is defined as [a,b] 7→ b−a. In fact, λ can be extended to open
and half-open intervals and we set λ([a,b)) = λ((a,b]) = λ((a,b)) = λ([a,b]) = b− a. In particular,
the length of a point x ∈ R is equal 0. Furthermore, we set λ equal 0 for all empty intervals and ∞
for all intervals of the forms (a,∞), (−∞,a) for a ∈ R.

Let us look at the graphs of these functions in Figure 0.2.

(1) Graph of | · | : R→ R≥0 (2) Graph of d·e : R→ Z (3) Graph of b·c : R→ Z

Figure 0.2: Visualisation of the absolute value, the ceiling and floor functions.

In previous courses you have learnt how to integrate a real-valued function. We can interpret the
integral of a function R→ R as the area enclosed in between the graph of the function and the x-
axis. We will not go into more detail here. Please make sure you feel comfortable with this notion
and that you remember basic properties, such as linearity.
We define the two following types of integrability:

• A function f : R→ R is called integrable if the integral over the domain is finite,∣∣∣∣∣∫
R

f (x)dx
∣∣∣∣∣ <∞ .

• A function is absolutely integrable if its absolute value is integrable,∫
R
| f (x)| dx <∞ .

If we define f +(x) = max( f (x),0) and f −(x) = max(− f (x),0) we can write | f (x)| = f +(x)−
f −(x). Using Lebesgue integration, we say f is integrable if

∫
f +(x)dx−

∫
f −(x)dx <∞, so

essentially, absolutely integrable means Lebesgue integrable.

6



0.3 Functions and graphs

0.3.1 Periodic functions

We find many periodic (or approximately periodic) functions in the real world, as for example a
child on a swing (pendulum), planetary motions, or (atomic) clocks. In mathematics, we define a
periodic function as follows.

Definition 0.6 (Periodic function) A function f : R→ R is called periodic if there exists a strictly
positive constant P > 0 such that for all x ∈ R

f (x + P) = f (x) . (0.1)

A constant P > 0 such that (0.1) is satisfied is called a period. The smallest such constant is called
the fundamental period.

We often say ‘the period’ when we actually mean ‘the fundamental period’. As we will see in
Remark 0.7, if a period exists, then there are infinitely many periods. So actually it only makes
sense to talk about ‘a period’ and not ‘the period’.

Remark 0.7 1. We call the restriction f|I : I → R of a periodic function f : R→ R of period P to
any closed interval I = [a,a + P], a ∈ R, a cycle. We can obtain the entire function by ‘copying and
pasting’ this cycle f|I to all intervals [a+nP,a+(n+1)P], n ∈Z. Figure 0.3 illustrates this procedure:
the solid part illustrates the graph of f|I , whereas the dotted parts are the ‘repetitions’ on [a−P,a]
and [a+ P,a+2P]. By comparing both graphs, assure yourself that this works independently of the
choice of the particular interval.

Figure 0.3: A periodic function f : R→ R with period P can be constructed from any interval of
length P.

2. From Figure 0.3 we can also intuit that any integer multiple of P is also a period of f . To be
more precise, we can use induction over N to prove this claim. For this let f be a function of period
P, so that the induction basis for n = 1, that is Equation (0.1), is satisfied. Let n ∈ N and assume
f (x + nP) = f (x) holds, this is the induction hypothesis (IH). Then

f (x + (n + 1)P) = f (x + nP + P)
(0.1)
= f (x + nP) IH

= f (x) ,

is satisfied. Similarly, we get

f (x− (n + 1)P)
(0.1)
= f (x− (n + 1)P + P) = f (x−nP) IH

= f (x−nP + nP) = f (x) .

7



0 Introduction and Preliminaries

By induction it follows that all elements in {nP |n ∈ Z} are periods of f . Hence, we have established
the following result: if a period exists, it is not unique and there are infinitely many periods. Make
sure you understand this basic example of a mathematical induction, it is very useful in many
situations.

Exercise 0.8 Explain how the ‘copying and pasting’ of a cycle mentioned in Remark 0.7 works.
That is, given an a ∈R and a function g : I = [a,a+P]→R with g(a) = g(a+P), construct a periodic
function f : R→ R with period P such that f|I = g. Or in other words, construct a function such
that g is a cycle. Is g a fundamental cycle, that means, is P the fundamental period of f ?

Before we continue, we want to mention that periodicity can also be defined on subsets of R. In
practice for example, subsets could be intervals representing time, and thus are of the form [0,T ],
T > 0. In this case, does it make sense to talk about periodicity if 2P ≤ T? Often, to simplify our
work, it is convenient to ‘cut’ the interval to a length T ′ = nP for some n ∈ N. Also note that the
second fact in Remark 0.7 is not true for functions only defined on intervals. But we could use our
ability to create periodic functions on R from cycles on intervals.

Let us continue the discussion of periodic functions on R. Probably the most familiar ones are sine
and cosine.

Example 0.9 The functions sine and cosine are periodic with fundamental period 2π.

Exercise 0.10 1. Is the tangent a periodic function?

2. Show that the sum, the difference, and the product of two periodic functions f ,g : R→ R with
the same fundamental period P are again functions of period P. Which further assumption do we
need such that the same is true for quotients?
Hint: Define the sum of the functions f and g pointwise by z(x) = f (x)+g(x) for all x ∈ R. Then use
Equation (0.1). Continue similarly for the rest.

3.∗ Is the function f :R→R defined by f (x) = sin(x)+ sin(2πx) periodic? Can you find a condition
such that the sum of two periodic functions on R is periodic?

Next, we show an important property of periodic functions.

Lemma 0.11 Let f :R→R be a periodic function with period P. If f is integrable on some interval
of length P, then it is integrable on all intervals of length P. In particular, the value of the integrals
are equal, that is for any a,b ∈ R we have∫ a+P

a
f (x)dx =

∫ b+P

b
f (x)dx, (0.2)

Proof Without loss of generality (w.l.o.g.) we can assume a = 0 and b ∈ [0,P]. We split the integral
on the interval [b,b + P] = [b,P]t (P,b + P] and use periodicity to get∫ b+P

b
f (x)dx =

∫ P

b
f (x)dx +

∫ b+P

P
f (x)dx =

∫ P

b
f (x)dx +

∫ b

0
f (x + P)dx

=

∫ P

b
f (x)dx +

∫ b

0
f (x)dx =

∫ P

0
f (x)dx . �

Exercise 0.12 Explain why it is enough to consider the case a = 0 and b ∈ [0,P]. Complete the
proof of Lemma 0.11 for arbitrary a,b ∈ R.

Exercise 0.13 Explain that if a function with period P is integrable on an interval of length P, then
it is integrable on any interval of finite length.
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0.3 Functions and graphs

0.3.2 One-sided limits and discontinuities

In this section, we will introduce the notion of one-sided limits and discuss a few different types of
discontinuities.

Definition 0.14 A one-sided limit is either of the two limits of a real-valued function x 7→ f (x) as
x approach a specified value x0 from above (the right) or from below (the left). The left-sided limit
at a point x0 is defined to be an L− ∈ R such that for any ε > 0 there exists a δ > 0 such that for
all x ∈ R the following implication is satisfied: 0 < x0 − x < δ =⇒ | f (x)− L−| < ε. As there is no
single conventional notation, we list the most common ones. Provided the existence, we write for
the left-sided limit

lim
x→x0
x<x0

f (x) = lim
x→x−0

f (x) = lim
x↗x0

f (x) = lim
x↑x0

f (x) ,

and for the right-sided limit we write

lim
x→x0
x>x0

f (x) = lim
x→x+

0

f (x) = lim
x↘x0

f (x) = lim
x↓x0

f (x) .

If both limits exist, but are not equal, then we say that the point x0 is a point of discontinuity of the
first kind, or simply, a point of jump discontinuity. If a function f has a jump discontinuity at x0 ,
then the quantity

δ = lim
x↓x0

f (x)− lim
x↑x0

f (x) (0.3)

is called the jump of f at x0.
If at least one of these limits does not exist, then the point x0 is called a point of discontinuity of the
second kind, or essential discontinuity.

Remark 0.15 1. If both one-sided limits exist and are equal, then we write the (two-sided) limit,

lim
x↑x0

f (x) = lim
x↓x0

f (x) = lim
x→x0

f (x) .

2. We will see in Example 0.16 below that it often makes sense to allow the limits to take values
+∞ = ∞ and −∞. It is important to understand that {−∞,+∞} * R so that this is not entirely
compatible with Definition 0.14. However, we can consider the extended real line R = [−∞,+∞] :=
R∪{−∞,+∞}, and thus, allow positive and negative infinities.

Example 0.16 (Different kinds of discontinuities) Let us start with some ‘nice’ discontinuities ex-
emplified in Figure 0.4.

(1) A removable discontinuity of sin(x)
x

(2) Jump discontinuities of a square wave

Figure 0.4: Visualisation of removable and jump discontinuities

9



0 Introduction and Preliminaries

1. Consider the function f : R→ R defined by

f (x) =

 sin(x)
x x , 0 ,

0 x = 0 .

A priori we do not know what value sin(x)
x takes at 0, so we just set f (0) = 0. However, it turns

out, using the series definition of the sine or L’Hôpital’s rule, that limx↑0 f (x) = limx↓0 f (x) =

limx→0 f (x) = 1. This kind of discontinuity is called a removable discontinuity, since by setting
f (0) = 1 we could remove the discontinuity and make f continues at 0. (But we don’t want to, we
want an example of a removable discontinuity.)

2. Let us define a square wave as

f (x) =

−1 if b2xc (mod 2) = 0 ,
1 else.

For example, consider the jump discontinuity at x0 = 0. We have limx↑x0 f (x) =−1 and limx↓x0 f (x) =

1. In particular, limx→x0 f (x) does not exist, and the jump at x0 = 0 is equal to δ = 2. On the other
hand, the jump at x0 = 1

2 is δ = −2.

Let us look at some more examples.

(3) An infinite discontinuity of 1
x2 (4) something

(5) Infinite discontinuities of tan(x) (6) An essential discontinuity of sin( 1
x )

Figure 0.5: Visualisation of one-sided limits and discontinuities

3. Consider the function f :R\ {0} →R≥0 defined by f (x) = 1
x2 . Now, according to Definition 0.14,

this function has neither one-sided limit. But if we allow infinite values we can write limx↑0 f (x) =

limx↓0 f (x) = +∞. Hence, even limx→0 f (x) = +∞ is an acceptable notion. We call this kind of
discontinuity an infinite discontinuity.

4. Consider f : [−1,1]→ [0,1] defined by f (x) =
√

1− x2. We have limx↓−1 f (x) = 0 and limx↑1 f (x) =

0, but limx↑−1 f (x) and limx↓1 f (x) do not exist, since f is not defined outside [−1,1]. So limx→−1 f (x)
and limx→1 f (x) do not exist.

10



0.3 Functions and graphs

5. Consider the tangent tan : (−π2 ,
π
2 )→R, defined by tan(x) =

sin(x)
cos(x) . We can define it on all intervals

of the form ( 2k−1
2 π, 2k+1

2 π), for k ∈ Z, and thus, we can define it on ∪k∈Z( 2k−1
2 π, 2k+1

2 π). Now, neither
of the one-sided limits exists at any of the discontinuity points. We find that as x < x0 tends to x0,
the tangent tends to +∞. Similarly, coming from the right, the tangent tends to −∞. In this case,
limx→x0 tan(x) is not defined.

6. Consider the function f : R \ {0} → [0,1] defined by f (x) = sin
(1

x
)
. Now, neither limx↑0 f (x) nor

limx↓0 f (x) exist, not even as infinity. We call this kind of discontinuity an essential discontinuity
(as in ‘this is essentially/substantially bad!’).

Exercise 0.17 Let us practice these new concepts in this exercise.

1. Define the right-sided limit with help of the (ε,δ) notion, as we did in Definition 0.14 for the
left-sided limit.

2. State the largest possible domains of the functions and calculate the left- and right-sided limits
and state the jump sizes (if possible) of

(a) f (x) = bxc at all x0 ∈ N ,

(b) f (x) =
1−cos(x)

x2 at x0 = 0 ,

(c) f (x) =

x2 sin( 1
x ) if x , 0

0 if x = 0
at x0 = 0 ,

(d) f (x) = x2−3x
x2−9 at x0 = 3 and x0 = −3 .

Hint: L’Hôpital’s rule can be handy in the second part of this exercise.

Remark 0.18 Let f : R→ R be continuous on the interval [−π,π] with f (−π) , f (π). When we
periodically extend f from [−π,π] to the whole axis, that means repeating f |[−π,π) on all intervals
[(k−1)π, (k +1)π), we produce jump discontinuities at the points (2k +1)π, k ∈ Z, which have equal
jumps sizes

δ = f (−π)− f (π) .

Note that this is not true for the tangent as we saw in Example 0.16. Why?

0.3.3 Even and odd functions

Let us briefly review functions which exhibit some sort of symmetry.

Definition 0.19 We say that f : R→ R is even if for every x ∈ R we have

f (−x) = f (x) .

We say f is odd if for every x ∈ R we have

f (−x) = − f (x) .

This notion can also be used on subsets A ⊂ R. We just have to make sure that for every x ∈ A we
also have −x ∈ A.

11
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This definition implies that the graph of any even function is mirror-symmetric with respect to the
y-axis. Similarly, graphs of odd functions are point-symmetric with respect to the origin (0,0) ∈R2.

Let f : R→ R be integrable. As we can already guess from Figure 0.6, the integral of an even
function f over an interval [−`,`], ` ∈ R≥0, can be calculated by only considering the interval [0, `].
Indeed, a short calculation yields that even functions satisfy for any ` ∈ R≥0∫ `

−`
f (x)dx =

∫ 0

−`
f (x)dx +

∫ `

0
f (x)dx = −

∫ −`

0
f (x)dx +

∫ `

0
f (x)dx

=

∫ `

0
f (−x)dx +

∫ `

0
f (x)dx = 2

∫ `

0
f (x)dx .

(0.4)

Even ‘better’, if f is an odd function, a similar calculation yields that∫ l

−l
f (x)dx = 0 . (0.5)

Example 0.20 The cosine is an even function, whereas the sine is an odd function. And indeed,
for ` = π we have

∫ π

−π
cos(x)dx = 2

∫ π

0 cos(x)dx = 0 and
∫ π

−π
sin(x)dx = 2− 2 = 0. Compare also

Figure 0.6.

Figure 0.6: Integrals of cosine and sine, where blue indicates a part that with positive contribution
whereas red indicates negative contribution to the integral.

The following two properties are direct consequences of the definition of even and odd functions.

Exercise 0.21 Consider functions R→ R and show the following two assertions.

1. The product of two even or two odd functions is an even function.
2. The product of an even and an odd function is an odd function.

0.4 Linear Algebra

Linear algebra is concerned with vector spaces and linear mappings between these spaces. We will
briefly revise vector spaces and their bases. We will continue with linear functions and their repres-
entation as matrices. We recall how the determinant, the characteristic polynomial, eigenvalues and
eigenvectors can be computed. Finally we use these results to diagonalise matrices and calculate
powers of them.

0.4.1 Vector spaces

Following the introduction of the most common sets, we can give our sets some structure. When
we think of a set we often associate certain ‘allowed actions’ (or calculation rules) with this set.
For instance, the well-known multiplication and division first, then addition and subtraction. It is

12
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expected that you know all the basic ‘calculation rules’ for the sets introduced above, including
exponentials and so on.

However, we briefly review Euclidean spaces. In particular, we are interested in Rn for n ∈ N.
Elements in Rn are called vectors and they are identified with n-tupels x = (x1, . . . , xn), where
x1, . . . , xn ∈ R. R1 = R is the real line and R2 is the Euclidean plane as introduced above. You
should be familiar with the following operations:

• Addition: For x,y ∈ Rn we have x + y = (x1 + y1, . . . , xn + yn) ∈ Rn.
• Scalar multiplication: For a scalar a ∈R and a vector x ∈Rn we have ax = (ax1, . . . ,axn) ∈Rn.

For an arbitrary set to be a vector space the set and the operations of summation and scalar multi-
plication have to satisfy the following axioms:

• For addition: associativity, commutativity, existence of an identity element, existence of
inverse elements.

• For scalar multiplication: Compatibility of multiplications, existence of an identity element,
distributivity of vector and scalar addition.

Exercise 0.22 Show that Rn together with the addition and scalar multiplication defined above is
indeed a vector space.
Hint: If you cannot recall what the axioms mean, Wikipedia is a good place to start searching.

Let us define one more useful operation:

• Inner product8: For x,y ∈ Rn we have x · y =
∑n

j=1 x jy j ∈ R.

The magnitude (or length) of a vector x is denoted by ‖x‖ and is defined as ‖x‖=
√

x · x =
√∑n

j=1 x2
j .

For Euclidean vectors, which we can think of as actual arrows (at least for n ≤ 3), the inner product
can also be written as

x · y = ‖x‖‖y‖cos(ϑ) ,

where ϑ is the angle between x and y. This is particularly useful if we want to determine the angle
between two vectors, which is given by the inverse

ϑ = arccos
(

x · y
‖x‖‖y‖

)
.

0.4.2 Bases of vector spaces

Vector spaces have a basis with which each element can be represented. For example, Rn comes
with what is known as the standard basis, which is a collection of unit vectors {e1, . . . ,en} ⊂ R

n,
defined as

e1 = (1,0,0 . . . ,0,0)ᵀ, e2 = (0,1,0, . . . ,0,0)ᵀ, . . . , en = (0,0,0, . . . ,0,1)ᵀ .

The operator ‘ᵀ’ is called the transpose of a matrix and it flips the row and column indices of a
matrix. We usually think of vectors as column vectors and we use the transpose here to save space.
As an example,

A =

(
1 2 3
4 5 6

)
and Aᵀ =

1 4
2 5
3 6

 .
8Also called dot product or scalar product.
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The unit vectors are normalised, ‖e1‖ = . . . = ‖en‖ = 1, and they are pairwise orthogonal, that means
for 1 ≤ k, ` ≤ n, k , ` we have ek · e` = 0. They represent the axes of a Cartesian coordinate system
and each element in Rn can be written as a linear combination of them. For example in R2, each
point on the unit circle can be written as x = (cos(ϑ),sin(ϑ))ᵀ. So splitting it up in horizontal and
vertical axis, we can write x = cos(ϑ)e1 + sin(ϑ)e2.

Now, for a given basis (usually the standard basis in our case) a linear map f : Rn → Rm can be
uniquely represented by an m× n-matrix A ∈ Rm×n. We denote the entries of a matrix with two
indices as A = (Ai j)1≤i≤m,1≤ j≤n, where the first one denotes the row and the second the column
number. Note that a different basis will in general give a different matrix.
Consider for example the map f : R2 → R2 with x 7→ (x1,−x2)ᵀ, the reflection across the x-axis.

We can represent this linear function by the matrix A =

(
1 0
0 −1

)
, since Ax = (x1,−x2)ᵀ.

Exercise 0.23 Given the standard basis of Rn, find matrices which represent the functions

• f1 : R2→ R2 with x 7→ ax, for some a ∈ R,
• f2 : R3→ R2 with x 7→ (x1 + 2x2, x2−3x3)ᵀ.

Is it possible to find a matrix which represents f : R2→ R with x 7→ ‖x‖ =

√
x2

1 + x2
2 ?

Hint: Why not?

Exercise 0.24 Recall some matrix operations. Let A,B ∈ Rn×n and let a ∈ R.

• Calculate aA, A + B, AB.
• Show that (Aᵀ)ᵀ = A, (A + B)ᵀ = Aᵀ+ Bᵀ, and (AB)ᵀ = BᵀAᵀ.
• Show that in general AB , BA.
• Write the dot product x · y of two vectors x,y ∈ Rn with help of the transpose operator.

Matrices are very useful to study linear functions. Moreover, they can be used to study systems of
linear equations (or linear systems). A system of m linear equations with n unknown variables is
defined as

a11x1 + . . .+ a1nxn = b1

...

am1x1 + . . .+ amnxn = bm .

This system can be written more compactly in matrix notation. Let A = (ai j)1≤i≤m,1≤ j≤n be the m×n-
matrix defined by the coefficients of the system, define b = (b1, . . . ,bm)ᵀ by the constant terms and
let x = (x1, . . . , xn)ᵀ. Then the linear system from above takes the form

Ax = b .

This equation potentially has the solution x = A−1b, if A is invertible, this means, if the inverse A−1

of A exists. The inverse of an n×n-matrix A is denoted by A−1 and it is also an n×n-matrix defined
as the left and right inverse AA−1 = A−1A = 1n ∈ R

n×n, where 1n (or In) is the n×n identity matrix

1n =


1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

 .
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0.4.3 Determinant

The determinant of a real-valued square matrix A is a value det A ∈ R (or det(A), |A|) which in a
loose sense represents the scaling factor of A. Formally, it is defined as the value of a multi-linear
(linear in each column), alternating (equal 0 if two columns are equal), and normalised (det1n = 1)
map from the space of all square matrices to the underlying field (in our case R).
We will mainly use it to determine whether a system of linear equation is solvable.

Proposition 0.25 A square matrix is invertible if and only if its determinant is not equal 0. In this
case, we have det A−1 = (det A)−1.

Let us recall how determinants can be calculated for (2×2), (3×3), and even larger matrices.

Proposition 0.26 Let A = (ai j)1≤i, j≤n be an n×n-matrix.

1. For n = 2 the determinant of A is given by

det A = det
(
a11 a12
a21 a22

)
=

∣∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣∣∣ = a11a22−a12a21 .

2. For n = 3 we have

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33 + a12a23a31 + a13a21a32−a13a22a31−a11a23a32−a12a21a33 .

3. For arbitrary n we can use the Leibniz formula. Actually, we will use the Laplace formula
(Laplacescher Entwicklungssatz), which essentially is a procedure to evaluate the Leibniz formula.
For a fixed column 1 ≤ j ≤ n it takes the form

det A =

n∑
i=1

(−1)i+ jai j det Ai j ,

whereas for a fixed row 1 ≤ i ≤ n we get

det A =

n∑
j=1

(−1)i+ jai j det Ai j .

Here, Ai j is the (n− 1)× (n− 1)-matrix that results from A by removing the i-th row and the j-th
column. The term det Ai j is called a minor of A. The choice of the row or the column we want to
use does not matter, so it often makes sense to choose it such that many of the coefficients ai j are
zeros.

Example 0.27 Let us look at an example. Calculate the determinant of the following matrix.

A =


1 0 −3 a
3 −4 4 2
0 0 0 1
3 1 5 −2

 .
We notice that this matrix has three zeros in the third row. Therefore, to make our lifes easy, we
choose the third row as the fixed row. The Laplace formula takes the form

det A =

4∑
j=1

(−1)3+ ja3, j det A3, j .
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Since a3,1 = a3,2 = a3,3 = 0, we only have to consider the (3× 3)-matrix A3,4, which we get by
removing the third row and the forth column of A,

A3,4 =


1 0 −3 a
3 −4 4 2
0 0 0 1
3 1 5 −2

 =

1 0 −3
3 −4 4
3 1 5

 .
We can now continue with Laplace to calculate the minor det A3,4, or we simply use the formula for
the determinant of a (3×3)-matrix. We choose the latter approach and get

det A = (−1)3+4 ·1 ·

∣∣∣∣∣∣∣∣∣
1 0 −3
3 −4 4
3 1 5

∣∣∣∣∣∣∣∣∣ = −(−20 + 0−9−36−4−0) = 69 .

Make sure you feel familiar with determinants and how they can be calculated. Here are a few short
exercises to practice on.

Exercise 0.28 Calculate the determinants of the following matrices and state for which a ∈ R each
one is invertible.

1. A =

(
3 a
4 0

)
B =

(
a 2

3a 6

)
C =

(
a 2
1
2 4a

)

2. D =

1 2 3
4 5 6
7 8 a

 E =

1 9 9
0 1 9
0 0 a


3. F =


2 4 1 −3
a 3a 0 0
3 5 2 −1
1 0 −a 7


Determinants have many nice properties. We summarise some important ones and we discuss yet
another way to calculate the determinant of the matrix A in Example 0.27.

Proposition 0.29 Let A,B ∈ Rn×n and a ∈ R, then we have

1. The determinant is a multiplicative map, this means det(AB) = det(A)det(B).
2. If A is a triangular matrix, this means if ai j = 0 for all i < j (or i > j), then det A =

∏n
i=1 aii.

3. If B results from A by exchanging two rows (or columns), then det B = −det A.
4. If B results from A by adding a multiple of a row (or column) to another row (or column), then

det B = det A.
5. If B results from A by multiplying a row (or column) by the constant a, then det B = adet A.

Now Proposition 0.29 Assertion 2 gives us an elegant way to calculate determinants. However, to
apply this result, we must have a triangular matrix. Luckily, we can often apply what is known as
the Gaussian elimination method (Gaußsches Eliminationverfahren).
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Exercise 0.30 Explain the steps used to calculate the determinant of the matrix A in Example 0.27.
In particular, explain how assertions 2, 3, and 4 in Proposition 0.29 are applied.∣∣∣∣∣∣∣∣∣∣∣

1 0 −3 a
3 −4 4 2
0 0 0 1
3 1 5 −2

∣∣∣∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣∣∣∣
1 0 −3 a
3 −4 4 2
3 1 5 −2
0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣∣∣∣
1 0 −3 a
3 −4 4 2
0 5 1 −4
0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣∣∣∣
1 0 −3 a
0 −4 13 2−3a
0 5 1 −4
0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣
1 0 −3 a
0 −4 13 2−3a
0 0 65

4 + 1 − 6+15a
4

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣ = −
(
1 · (−4) ·

(65
4

+ 1
)
·1

)
= 69 .

Exercise 0.31 Use assertions 1 and 2 in Proposition 0.29 to show that det(aA) = an det A, for a ∈R.

0.4.4 Eigenvectors, eigenvalues, and the characteristic polynomial

Consider a linear transformation from a vector space to itself. In our case, we consider a square
matrix, that is a linear transformation Rn → Rn. If we find a non-zero vector x ∈ Rn such that the
vector Ax is a scalar multiple of it, that is if,

Ax = λx , (0.6)

then x is an eigenvector of this matrix and λ is the eigenvalue corresponding to this eigenvector.

Exercise 0.32 Consider the following eigenvalue equation and find the eigenvalue λ corresponding
to the given eigenvector. 3 2 1

2 0 2
1 2 3


−1

0
1

 = λ ·

−1
0
1


The simplest way to find eigenvalues of a matrix (if you do not know the eigenvectors) is with
help of the characteristic polynomial. The eigenvalue equation (0.6) can be written as λx− Ax =

(λ1n−A)x = 0. Since x is non-zero, the matrix λ1n−A must be singular (not invertible) and thus,
its determinant must be 0. The characteristic polynomial of a square matrix A ∈Rn×n is then defined
as the determinant of this matrix

pA(λ) = det(λ1n−A) = λn + an−1λ
n−1 + . . .+ a1 , (0.7)

and hence, the roots of this polynomial are therefore the eigenvalues of the matrix.

Example 0.33 Consider the matrix A =

(
3 a
4 0

)
from Exercise 0.28. The characteristic polynomial

is given by

det(λ1n−A) = det
((
λ 0
0 λ

)
−

(
3 a
4 0

))
=

∣∣∣∣∣∣λ−3 −a
−4 λ

∣∣∣∣∣∣ = λ(λ−3)−4a = λ2−3λ−4a .

The roots of this polynomial are λ1 = 3−
√

16a+9
2 and λ2 = 3+

√
16a+9
2 . For a = 1, we have λ1 = −1

and λ2 = 4. Solving the eigenvalue equation with these eigenvalues we get the corresponding
eigenvectors as multiples of

x1 =

(
1
−4

)
and x2 =

(
1
1

)
.
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0 Introduction and Preliminaries

Beside this useful application, it has some interesting properties. For example, the coefficient of
λn is always 1, the coefficient an−1 of λn−1 is −tr(A) = −

∑n
j=1 a j j, and the coefficient a1 is given by

(−1)n det A.

0.4.5 Diagonalisable matrices

A square matrix A over R (or C, or any field) is called a diagonal matrix if all entries outside the
leading diagonal are zero. We often write an (n×n)-diagonal matrix A as

A = diag(a1, . . . ,an) =


a1 0 · · · 0

0 a2
. . .

...
...

. . .
. . . 0

0 · · · 0 an

 .
A square matrix A is called diagonalisable if it is similar to a diagonal matrix, that means if there
exist an invertible matrix P such that P−1AP is a diagonal matrix.

Proposition 0.34 A matrix A ∈ Rn×n is diagonalisable if and only if the eigenvectors of A form a
basis of Rn. In this case, the columns of P can be defined as the eigenvectors of A.

Example 0.35 Consider the matrix A =

(
3 1
4 0

)
from Example 0.33. We have already established

that the eigenvalues are λ1 = −1 and λ2 = 4 with corresponding eigenvectors x1 = (1,−4)ᵀ and
x2 = (1,1)ᵀ. Next, define the columns of P with these eigenvectors

P = (x1, x2) =

(
1 1
−4 1

)
.

We immediately see that det P = 5 , 0 and thus, the eigenvectors are linearly independent and P is
invertible. Using for example Gauß-elimination we quickly find its inverse

P−1 =

( 1
5 − 1

5
4
5

1
5

)
.

The result immediately follows

P−1AP =

( 1
5 − 1

5
4
5

1
5

)(
3 1
4 0

)(
1 1
−4 1

)
=

(
−1 0
0 4

)
.

Note that the order of the columns in P does not matter and it will only affect the order of the
eigenvalues in the resulting diagonal matrix.

Diagonal matrices are usually easy to handle. For example, powers of a diagonal matrix A =

diag(a1, . . . ,an) are simply given by

Ak = diag(ak
1, . . . ,a

k
n) .

From here we get an elegant way to compute the powers of a diagonalisable matrix A. Let D =

P−1AP denote the resulting diagonal matrix, then A = PDP−1. Hence,

Ak = (PDP−1)k = (PDP−1)(PDP−1) · · · (PDP−1) = PD(P−1P)D(P−1P) · · ·DP−1 = PDkP−1 .

Since D is diagonal, its powers are given as above. This procedure is usually much faster than
calculating Ak directly.
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Example 0.36 Just imagine how labourious it would be if someone asked you to calculate some
specific very large powers of A from Example 0.35. You would start

A =

(
3 1
4 0

)
, A2 =

(
13 3
12 4

)
, A3 = A2 ·A =

(
51 13
52 12

)
, A4 = A3 ·A =

(
205 51
204 52

)
, . . .

and soon get tired. But you could actually use the clever and much more rewarding way. From
Example 0.35 we know that A is diagonalisable and the diagonal matrix is given by D = diag(−1,4).
The k-th power is quickly calculated as Dk = diag((−1)k,4k). Hence,

Ak = PDkP−1 =

(
1 1
−4 1

)(
(−1)k 0

0 4k

)( 1
5 −1

5
4
5

1
5

)
=

1
5

(
4k+1 + (−1)k 4k + (−1)k+1

4k+1 + 4 · (−1)k+1 4k + 4 · (−1)k

)
=

1
5

(
4k

(
4 1
4 1

)
+ (−1)k

(
1 −1
−4 4

))
.

You are now ready to plug your specific k in and be on your way to do some more maths.

0.4.6 Matrix exponential

Let A ∈ Rn×n (or Cn×n). The exponential of A is denoted by eA or exp(A) and is (in analogy to the
real case) defined via the power series

eA =

∞∑
k=0

Ak

k!
∈ Rn×n ( or Cn×n) .

The nice thing is that this series converges for all real (and complex) matrices and thus, the matrix
exponential is always well-defined. Let us briefly outline why this is true. Since Rn×n (and Cn×n)
are complete it is sufficient to show convergence in norm, and since Rn×n (and Cn×n) are finite-
dimensional vector spaces, all norms define the same topology. So taking a sub-multiplicative
norm, we establish 0 ≤ ‖Ak

k! ‖ ≤
‖A‖k

k! , for all k ∈ N0. Thus,∥∥∥∥∥∥∥
∞∑

k=0

Ak

k!

∥∥∥∥∥∥∥ ≤
∞∑

k=0

∥∥∥∥∥∥Ak

k!

∥∥∥∥∥∥ ≤ ∞∑
k=0

‖A‖k

k!
.

But ‖A‖ ∈ R and we know that
∑∞

k=0
xk

k! converges for all x ∈ R, hence, eA is well-defined. With this
we have also established that ‖eA‖ ≤ e‖A‖.

In fact, there are a number of properties of the usual exponential on R (or C) which also hold for
the matrix exponential.

Proposition 0.37 Let A,B ∈ Rn×n (or Cn×n) and let a,b ∈ R (or C).

1. Let 0 ∈ Rn×n be the (n×n)-zero matrix, then e0 = 1n.
2. We have eaAebA = e(a+b)A.
3. If A,B commute, that means AB = BA, then eA+B = eAeB.
4. The exponential of A is always invertible and the inverse is

(
eA)−1

= e−A.

Proof We will only prove assertions 1, 2, and 4. Assertion 3 can be shown more elegantly after we
discuss the exponential map some more.

1. Since for any matrix A ∈ Rn×n we have A0 = 1n, the assertion follows directly.
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2. We have

eaAebA =

∞∑
k=0

(aA)k

k!

∞∑
`=0

(bA)`

`!
=

∞∑
k=0

∞∑
`=0

akb`Ak+`

k!`!

n=k+`
`=n−k

=

∞∑
k=0

∞∑
n=k

akbn−kAn

k!(n− k)!
·
n!
n!

=

∞∑
n=0

n∑
k=0

An

n!
n!

k!(n− k)!
akbn−k =

∞∑
n=0

An

n!
(a + b)n = e(a+b)A .

4. From assertions 1 and 2 we immediately get

e−AeA = eAe−A = e(1−1)A = e0 = 1n .

hence, e−A must be the inverse of eA. �

With Assertion 4 of Proposition 0.37 we established that exp : Cn×n → GLn(C), where GLn(C) is
called the general linear group over C of degree n and is the set of all invertible matrices together
with the usual matrix multiplication, GLn(C) = {A ∈ Cn×n | det A , 0}.

For some A ∈ Rn×n consider the function

f : R→ GLn(C) with t 7→ etA .

It turns out that this function is actually a smooth curve in GLn(C) and its (component-wise) deriv-
ative at a point t ∈ R is given by

d
dt

etA = AetA = etAA .

We already established the well-definedness of the matrix exponential. This also means that its
component-wise series converge. Hence, we can exchange the order of summation and differenti-
ation and we get (component-wise)

d
dt

etA =

∞∑
k=0

d
dt

(
tkAk

k!

)
=

∞∑
k=1

�ktk−1Ak

�k(k−1)!
= A

∞∑
k=1

tk−1Ak−1

(k−1)!
= AetA . (0.8)

This result will be very useful when we solve systems of differential equations. See Theorem 2.5.
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1 Fourier Series

The Fourier series, named in honour of Jean-Baptiste Joseph Fourier, is a series of sines and cosines
(or equivalently complex exponentials) which can be used to represent periodic functions. It turns
out that a lot of periodic functions can be represented as a series of sines and cosines and practical
applications reach from signal processing, as for example noise minimisation and compression of
music, for example mp3, to solving partial differential equations.

1.1 How the Fourier series naturally arises

The Fourier series was initially suggested in order to solve certain differential equations. We will
see how the well-known heat equation motivates the theory of Fourier series.
Let us agree that temperature is a function of time and space. For example, turning on the engine
in your car will cause the metal to heat up over time. But the temperature is not the same on all
the parts, so it also depends on the particular location we look at. The heat equation is a partial
differential equation and it describes how the temperature changes over time.

We study the one dimensional heat equation as a simplification of the heat propagation in a thin
metal rod of length ` > 0. Consider Figure 1.1 and let u : [0, `]×R≥0→ R denote the temperature
of the rod.

Figure 1.1: Idealized physical setting for heat conduction in a rod with homogeneous boundary con-
ditions. Source: https://upload.wikimedia.org/wikipedia/commons/9/97/Temp_Rod_
homobc.svg

Assume that u is at least twice differentiable in x and one time differentiable in t. The heat equation
in one dimension with Dirichlet boundary conditions u(0, t) = u(`, t) = 0 and initial temperature
distribution u( · ,0) = f : [0, `]→ R is given by

∂u(x, t)
∂t

= α
∂2u(x, t)
∂x2 or shorter ∂tu = α∂xxu .

If f ≡ 0, then u ≡ 0 is the unique solution. But we are not interested in the trivial solution. Let us
take the guess that u is of the form u(x, t) = X(x)T (t). Then the heat equation takes the form

X(x)T ′(t) = αX′′(x)T (t) .

To simplify, we can assume without loss of generality (w.l.o.g.) that α= 1 (redefine X̄(x) = X( 1√
α

x),
since α , 0). This is equivalent to (assuming we do not divide by zero)

X′′(x)
X(x)

=
T ′(t)
T (t)

. (1.1)
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1 Fourier Series

Now the left hand side of Equation (1.1) is a function of x, whereas the right hand side only depends
on t. This is only possible if this expression is constant, that means if there is a constant λ ∈ R such
that X′′(x)

X(x) =
T ′(t)
T (t) = −λ, with the conventional minus sign. This gives us two ordinary differential

equations

X′′(x) +λX(x) = 0 ,

T ′(t) +λT (t) = 0 .

We quickly find that T (t) = T0e−λt, for some constant T0. If T0 = 0, then we have the trivial solution
again. So let us assume T0 , 0. In this case, the Dirichlet boundary conditions dictate that X(0) =

X(`) = 0. This is an example of a Sturm-Liouville problem. Here, we differentiate three cases,
λ < 0, λ = 0, and λ > 0. It turns out that only the case λ > 0 gives us non-trivial solutions of the form

X(x) = C1 sin(
√
λx) +C2 cos(

√
λx) .

The boundary conditions give us C2 = 0 and C1 sin(
√
λ`) = 0. We do not want C1 = 0 (trivial

solution), but we can choose λ = n2π2

`2 , for n ∈ Z. Hence, for all n ∈N and constants Cn the functions

Xn(x) = Cn sin( nπx
` ) are solutions. Similarly we now get Tn(t) = Dn exp

(
− n2π2t

`2

)
, for some constants

Dn. Combining Tn and Xn and setting bn = CnDn we get for n ∈ N solutions of the heat equation as

un(x, t) = bn sin
(nπx
`

)
exp

(
−

n2π2t
`2

)
,

which satisfy un(0, t) = un(`, t) = 0. We are almost done. The only thing we have not yet considered
is the initial temperature distribution u( · ,0) = f . We notice that the exponential equals 1 for t = 0,
so that un(x,0) = bn sin

(
nπx
`

)
. Since (finite) linear combinations of solutions are again solutions, we

could try and combine all the solutions to form a series (one has to show that this also works)

u(x, t) =

∞∑
n=1

bn sin
(nπx
`

)
exp

(
−

n2π2t
`2

)
,

so that the initial temperature distribution must be given by the following series,

f (x) !
=

∞∑
n=1

bn sin
(nπx
`

)
.

It turns out that we can indeed sometimes find coefficients bn such that the series converges and is
equal to f . We call such a series the Fourier series of f . The problem of finding the coefficients
and studying convergence properties of the series is part of the Fourier analysis.

1.2 The building blocks: simple harmonic motion

In applications, we often encounter periodic functions f : R→ R of the form

f (x) = Asin(ωx +ϕ), (1.2)

where A,ω and φ are constants in R. This function is called a harmonic of amplitude |A|, (angular)
frequency ω, and the initial phase φ. The period of such a harmonic is P = 2π

ω , since for any x ∈ R
we have

Asin
(
ω

(
x +

2π
ω

)
+φ

)
= Asin

(
(ωx +φ) + 2π

)
= Asin(ωx +φ) . (1.3)
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1.3 Building with the building blocks

The terms amplitude, frequency, and initial phase originate from mechanical problems involving
simple oscillatory motions, that is simple harmonic motions, as for example, a frictionless spring-
mass system. The term harmonic is strictly speaking any term in the harmonic series

∑∞
n=1

1
n .

The series gets its name from harmonics in music, since the overtones of a string are 1
n of the

fundamental wavelength.

Example 1.1 Consider an E string on a violin or a guitar, which has some fundamental frequency.
Dividing the string into two equal parts, we double the fundamental frequency and get the second
harmonic, which sounds an octave higher. The third harmonic with three times the fundamental
frequency gives a perfect fifth above the second harmonic, which in this case would be a B. Can
you continue with this list?

Adding single sinusoids from Equation (1.2) with different A,ω,ϕ together we can build more
involved periodic functions. It turns out that taking the sum over just the sine leads to complicated
calculations and that it is easier to add the cosine into the picture. Let N ∈ N and consider the
function f : R→ R given by

f (x) =
a0

2
+

N∑
n=1

(
an cos(nx) + bn sin(nx)

)
, (1.4)

where a0,an,bn ∈ R for all n ∈ N. The constant term a0
2 is referred to as the direct current (DC)

component in electrical engineering, and also here, the fraction 1
2 will simplify notation when we

consider the complex representation. Note that the harmonics in Equation (1.4) have periods 2π
n for

n ∈ {1, . . . ,N}, respectively.

Exercise 1.2 Show that the sum in Equation (1.4) has fundamental period 2π.

So a sum as in Equation (1.4) defines a function of period 2π. The aim of this chapter is to investig-
ate the other direction: given a function f : R→ R of period 2π, can we find a sum or series which
represents f ? We will see that this is sometimes possible, but not always. The length of the period
does not matter for the representation, but for simplicity we will start with periods of length 2π.

1.3 Building with the building blocks

Let us start with the assumption that f indeed yields such a representation and investigate what
rules this representation must obey. For one, we could try and find the coefficients a0,an,bn in
terms of our function f . The following lemma is useful for the derivation of these coefficients.

Lemma 1.3 Let n,m ∈N. The following auxiliary integrals are used in the derivation of the Fourier
coefficients.

1.
∫ 2π

0
cos(nx)dx = 0

2.
∫ 2π

0
sin(nx)dx = 0

3.
∫ 2π

0
sin(nx)cos(mx)dx = 0

4.
∫ 2π

0
cos(nx)cos(mx)dx =

0 n , m
π n = m

5.
∫ 2π

0
sin(nx) sin(mx)dx =

0 n , m
π n = m

Exercise 1.4 Make sure you feel confident calculating these integrals and that you know all neces-
sary steps. What changes if we consider sin(Pnx) and cos(Pnx) for some P > 0? Compare your
thoughts to Exercise 1.17.
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In the first step of the derivation of the coefficients, we integrate both sides of Equation (1.4) over
the interval [0,2π]. Since the integral is linear, we can exchange the sum and the integral and then
use Lemma 1.3 to get

∫ 2π

0
f (x)dx =

∫ 2π

0

a0

2
+

N∑
n=1

an cos(nx) + bn sin(nx)dx

= a0π+

N∑
n=1

an

∫ 2π

0
cos(nx)dx︸             ︷︷             ︸

=0,∀n∈{1,...,N}

+bn

∫ 2π

0
sin(nx)dx︸            ︷︷            ︸

=0,∀n∈{1,...,N}

= a0π.

Consequently, a0 is given by

a0 =
1
π

∫ 2π

0
f (x)dx. (1.5)

In the second step, we multiply both sides of (1.4) by cos(mx), for some fixed m ∈ {1, . . . ,N},
integrate the resulting expression from 0 to 2π, and again use Lemma 1.3. We obtain

∫ 2π

0
f (x)cos(mx)dx =

a0

2

∫ 2π

0
cos(mx)dx︸              ︷︷              ︸

=0,∀m∈{1,...,N}

+

N∑
n=1

an

∫ 2π

0
cos(nx)cos(mx)dx︸                        ︷︷                        ︸

=π if m=n and =0 else

+bn

∫ 2π

0
sin(nx)cos(mx)dx︸                        ︷︷                        ︸
=0,∀m,n∈{1,...,N}

= amπ.

Therefore,

am =
1
π

∫ 2π

0
f (x)cos(mx)dx, for m ∈ {1, . . . ,N} . (1.6)

Similarly, multiplying both parts of Equation (1.4) with sin(mx) and integrating from 0 to 2π we
get

∫ 2π

0
f (x) sin(mx)dx =

a0

2

∫ 2π

0
sin(mx)dx

+

N∑
n=1

an

∫ 2π

0
cos(nx) sin(mx)dx + bn

∫ 2π

0
sin(nx) sin(mx)dx

= bmπ.

It follows that

bm =
1
π

∫ 2π

0
f (x) sin(mx)dx, for m ∈ {1, . . . ,N} . (1.7)

We can conclude that if a function f of period 2π can be written as a trigonometric sum (1.4), then
the coefficients must be given by (1.5), (1.6), and (1.7). However, we have not yet answered the
question whether all periodic function can be written as a sum. This question will be addressed in
the following section.
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1.4 Fourier Series

1.4 Fourier Series

For the derivation of the coefficients above we used the assumption that a function f is represented
by a sum of the form (1.4). Since it was just a finite series (a sum), we were allowed to exchange
the integral and the sum. In general, this procedure is not applicable to series and f must satisfy
certain conditions. It is common to write

f ∼
a0

2
+

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
to indicate some connection between the function f on the left-hand side and the series on the
right-hand side. In our case, we indicate with ∼ that the coefficients a0,an, and bn are defined by
the Fourier-coefficients in (1.5), (1.6), and (1.7), respectively. In this sense, the Fourier series is
always defined as long as the integrals exist. However, this does not mean that f and the series are
a priori equal, so we refrain from using the equal sign.

To study this in more detail, one has to consider the partial sum

S f ,N(x) =
a0

2
+

N∑
n=1

(
an cos(nx) + bn sin(nx)

)
.

We want to find out under which conditions and in which sense S f ,N converges to f . For real-world
applications we are usually interested in pointwise, uniform, and Lp convergence.

The following results, names after Peter Gustav Lejeune Dirichlet, states sufficient conditions on f
for pointwise convergence of its Fourier series.

Theorem 1.5 (Dirichlet conditions) If f : R→ R is a 2π-periodic function which is is absolutely
integrable over one period, has a finite number of extrema and a finite number of non-infinite
discontinuities in any given interval, then for all x ∈R the Fourier series of f converges (pointwise)
to the arithmetic mean of the left and right limit of f at x,

lim
N→∞

S f ,N(x) =
a0

2
+

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
=

1
2

(
lim
y↓x

f (y) + lim
y↑x

f (y)
)
.

So any 2π-periodic function which satisfies these conditions can be represented by its Fourier series.
Notice however, that at points of discontinuity, the value of the Fourier series is the midpoint of the
values at the discontinuity. Compare this result to Figure 1.3.

Corollary 1.6 Let f : R→ R satisfy the Dirichlet conditions in Theorem 1.5 and assume that f is
continuous on R, then the Fourier series of f converges and is equal to f .

Remark 1.7 The Dirichlet conditions are satisfied if f has bounded variation over one period, that
is, if its total variation is finite,

Vb
a ( f ) = sup

P∈P

nP∑
i=1

| f (xi+1− f (xi)| <∞ ,

where the supremum is taken over the set P of all partitions of the interval [a,b],

P = {P = {x1, . . . , xnP} |P is a partion of [a,b] with xi ≤ xi+1 for 1 ≤ i ≤ nP} .

If f is differentiable and its derivative is integrable, then

Vb
a ( f ) =

∫ b

a
| f ′(x)|dx .
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1 Fourier Series

Exercise 1.8 Decide and justify whether the Fourier series of the following functions will converge.
What happens at points of discontinuity?

1. The function f1 : [−π,π]→ R with f1(x) = x4−2π2x2, which is extended periodically to R.

2. The sawtooth wave with period 2π: f2 : R→ R given by f2(x) = 2
(

x
π −

⌊
x
π + 1

2

⌋)
.

3. The triangle wave with period 2π: f3 : R→ R given by f3(x) =
∣∣∣∣2 (

x
π −

⌊
x
π + 1

2

⌋)∣∣∣∣.
4. The series f4 : R→ R given by f4(x) =

∑
n∈Z e−(x−2πn)2

.

5. The tangent tan : ∪k∈Z( 2k−1
2 π, 2k+1

2 π)→ R.

We get a stronger notion of converges if we Fourier coefficients are absolutely summable.

Proposition 1.9 If the Fourier series converges pointwise to f and its Fourier coefficients are
absolutely summable, then the Fourier series converges uniformly.

Exercise 1.10 Decide if the Fourier series in Exercise 1.8 also converge uniformly.

Thus far we saw conditions on f that ensure convergence of its Fourier series. But what if we find
a trigonometric representation of a periodic function, is it necessarily its Fourier series?

Theorem 1.11 If a 2π-periodic function f is represented as a trigonometric series which converges
uniformly on R, then this series is the Fourier series of f .

Proof Suppose that f (x) =
a0
2 +

∑∞
n=1

(
an cos(nx) + bn sin(nx)

)
, where a0,an,bn are ‘unknown’, and

that the series is uniformly convergent. As we have uniform convergence, term by term integration
of the series is allowed. Thus, in analogy to Section 1.3 we get a0 as in Equation (1.5). Next, we
multiply both sides by cos(kx) and get

f (x)cos(kx) =
a0

2
cos(kx) +

∞∑
k=1

(
an cos(nx) + bn sin(nx)

)
cos(kx) .

We have to show that also this series converges uniformly. Since the Fourier series of f converges
uniformly, we find an Nε for any ε > 0, such that for all N ≥ Nε ,

| f (x)−S f ,N(x)| ≤ ε .

Hence, we get for all N ≥ Nε ,

| f (x)cos(kx)−S f ,N(x)cos(kx)| = | f (x)−S f ,N(x)||cos(kx)| ≤ ε ,

and thus, this series can be integrated term by term, and we get an as in Equation (1.6). Similarly,
we can derive the formula in Equation (1.7). �

Theorem 1.12 If an absolutely integrable function f of period 2π can be expanded in a trigono-
metric series which converges to f everywhere, except possibly at a finite number of points (within
one period), then this series is the Fourier series of f .

Finally, we want to mention pointwise convergence almost everywhere (with respect to the Le-
besgue measure). Functions in Lp are defined up to null sets, which means that two functions are
identified if they only differ on a null set. We say that the two functions are equal almost every-
where. We say that a subset X ∈ R is a null set (a set with Lebesgue measure 0) if and only if for all
ε > 0 there is a sequence of intervals that contain X and the length of their union is less than ε.
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1.5 General periodic function and complex Fourier coefficients

Theorem 1.13 (Carleson-Hunt) If f is a 2π-periodic function in Lp([0,2π]) for p ∈ (1,∞) and
a0,an, and bn are defined as above, then for almost every x ∈ R

f (x) =
a0

2
+

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
.

Exercise 1.14 Briefly discuss Exercise 1.8 using Theorem 1.13.

1.5 General periodic function and complex Fourier coefficients

Until now we have considered functions of period 2π. But how can we represent functions of
arbitrary period P? The next lemma gives us a simple way to change the period of a given periodic
function.

Lemma 1.15 Let f : R→ R be a periodic function with period 2π. The function g : R→ R defined
point-wise by

g(x) = f
(2π

P
x
)

has period P.

Proof Using periodicity of f , a short calculation yields the assertion,

g(x + P) = f
(2π

P
(x + P)

)
= f

(2π
P

x + 2π
)

= f
(2π

P
x
)

= g(x) .

�

From Lemma 1.15 we get in particular that for a function f of period P the function g defined
by g(x) = f (Px) has period 1. So as a mnemonic we could remember that when multiplying the
argument of a given function with its period, we ‘squeeze’ one cycle into an interval of length 1.
From there we can divide the argument by any P > 0 to ‘stretch’ the cycle to an interval of length
P.

Example 1.16 1. Consider for example the periodic function from Figure 0.3. Let f denote the
original function with period π. We can define a function g of period 1 by multiplying the argument
with π as g(x) = f (πx). Furthermore, we can divide the argument of g by π

2 as h(x) = g( 2x
π ) = f (2x)

to get a function of period π
2 .

(1) Function f of period π (2) Function g of period 1
defined by g(x) = f (πx)

(3) Function h of period π
2

defined by h(x) = g( 2x
π )

Figure 1.2: Visualisation of the procedure to change periods
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1 Fourier Series

2. Let us redefine the harmonic from (1.2) so that it has period 1. For this we multiply the argument
with 2π

ω and get

g(x) = Asin
(2π
ω
ωx +

2π
ω
ϕ
)

= Asin(2πx + ϕ̂) .

3. We can modify the trigonometric sum in Equation (1.4) to get any period we want. For example,
by Exercise 1.2 and Lemma 1.15, we get that

g(x) =
a0

2
+

N∑
n=1

(
an cos(2πnx) + bn sin(2πnx)

)
(1.8)

is a function of period 1.

Exercise 1.17 In this exercise, we want to generalise the coefficients (1.5), (1.6), and (1.7) derived
in Section 1.3 for sums of arbitrary periods. Let ω0 = 2π

P and consider the sum

f (x) =
a0

2
+

N∑
n=1

(
an cos(ω0nx) + bn sin(ω0nx)

)
.

By Exercise 1.2 and Lemma 1.15 we know that f has period P. In analogy with the procedure in
Section 1.3, derive the coefficients a0,an and bn for n ∈ N following these steps:

1. Consider Lemma 1.3 and make necessary changes to calculate the integrals.

2. Integrate f over the interval [0,P] and show that

a0 =
2
P

∫ P

0
f (x)dx .

3. Multiply f with cos(ω0nx) and integrate over [0,P] to show that

an =
2
P

∫ P

0
f (x)cos(ω0nx)dx for n ∈ {1, . . . ,N} .

4. Multiply f with sin(ω0nx) and integrate over [0,P] to show that

bn =
2
P

∫ P

0
f (x) sin(ω0nx)dx, for n ∈ {1, . . . ,N} .

Compare your results to Exercise 1.4.

In the following exercise, you will derive another version of the trigonometric sum using complex
exponentials. This representation is simpler and more elegant to work with. You will often find the
‘complex version’ of the Fourier coefficient, so it is important that you feel comfortable with this
version.

Exercise 1.18 As you may know, the sine and the cosine can be written in terms of complex expo-
nentials,

sin(x) =
eix− e−ix

2i
, cos(x) =

eix + e−ix

2
, (1.9)
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1.6 Even and odd functions

where i denotes the imaginary unit. Using this, we want to write the sum in Equation (1.8) in the
form

f (x) =

N∑
n=−N

cne2πinx . (1.10)

In this exercise, you will derive this representation and show how the coefficients cn relate to the
coefficients a0,an, and bn derived in (1.5), (1.6), and (1.7), respectively. Follow these two steps:

1. Start with Equation (1.8) and substitute the sines and cosines with the expressions from Equa-
tion (1.9).

2. Bracket your expression in pairs of e−2πinx and e2πinx and then change the limits of the sum
such that there are only expressions e2πinx.

In summary, you have just shown that

c0 =
a0

2
, and for n ∈ {1, . . . ,N} : cn =

an− ibn

2
and c−n =

an + ibn

2
.

Note that c0 =
∫ 1

0 f (x)dx is the average of the function f over the interval [0,1]. Also note that since
the sum in Equation (1.8) is real and e−2πinx is the complex conjugate of e2πinx, we have c−n = cn

for all n ∈ {1, . . .N}. This means, if you have found cn in a form α+ iβ you can just change the sign
of the imaginary part to get c−n = α− iβ. Similarly, if you are given complex coefficients, you can
get the real ones as an = cn + c−n = 2R(cn) and bn = i(cn− c−n) = −2I(cn), for n ∈ {1, . . . ,N}.

Remark 1.19 It is common to denote the Fourier coefficients by f̂ (n) = cn.

1.6 Even and odd functions

One nice thing about even and odd functions is that we can simplify the corresponding Fourier
series. Let f be an even function defined on the interval [−π,π] (or an even periodic function on
R). Since x 7→ cos(nx) is an even function for any n ∈ N, Exercise 0.21 tells us that the function
x 7→ f (x)cos(nx) is also even for any n ∈ N. On the other hand, the function x 7→ sin(nx), n ∈ N, is
odd, so that the function x 7→ f (x) sin(nx) is also odd. Then using (1.6), (1.7), (0.4) and (0.5), we
find that the Fourier coefficients of the even function f are

an =
1
π

∫ π

−π
f (x)cos(nx)dx =

2
π

∫ π

0
f (x)cos(nx)dx , n ∈ N0 ,

bn =
1
π

∫ π

−π
f (x) sin(nx)dx = 0 , n ∈ N.

Therefore, the Fourier series of an even function contains only cosines,

f ∼
a0

2
+

∞∑
n=1

an cos(nx) .

Similarly, let f be an odd function, defined on the interval [−π,π], or else an odd periodic function.
Since cos(nx) is an even function, the function x 7→ f (x)cos(nx) is odd, and since sin(nx) is odd,
the function f (x) sin(nx) is even. Then using (1.6), (1.7), (0.4) and (0.5), we find that the Fourier
coefficients of the odd function f are

an =
1
π

∫ π

−π
f (x)cos(nx)dx = 0 n ∈ N0,
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1 Fourier Series

bn =
1
π

∫ π

−π
f (x) sin(nx)dx =

2
π

∫ π

0
f (x) sin(nx)dx n ∈ N.

Therefore, the Fourier series of an odd function contains only sines,

f ∼
∞∑

n=1

bn sin(nx) .

Since the Fourier series of an odd function contains only sines, it vanishes for all points x = kπ,k ∈Z,
regardless of the values of f at these points.

Example 1.20 Let us consider the square wave f : ∪k∈Z(k,k + 1) → {−1,1} from Example 0.16
defined as

f (x) =

−1 if mod (b2xc,2) = 0 ,
1 else.

Note that this function has period 1 and recall Exercise 1.17. Note that f is odd, that means for
all x ∈ ∪k∈Z(k,k + 1) we have f (x) = − f (−x). If we assume now that we can represent f as a
trigonometric series, then we know from the discussion above that an = 0 for all n ∈ N0. A short
calculation yields now

bn = 2
∫ 1

0
f (x) sin(2πnx)dx = 2

(∫ 1
2

0
f (x) sin(2πnx)dx +

∫ 1

1
2

f (x) sin(2πnx)dx
)

= 2
(∫ 1

2

0
sin(2πnx)dx−

∫ 1

1
2

sin(2πnx)dx
)

=
1
πn

(
− cos(2πnx)

∣∣∣∣ 1
2

0
+ cos(2πnx)

∣∣∣∣11
2

)
=

1
πn

(
2−2cos(πn)

)
=

0 if n is even,
4
πn if n is odd .

Therefore, the Fourier series becomes

4
∞∑

k=0

sin(2π(2k + 1)x)
π(2k + 1)

.

For practical applications we must of course cut this series at some point, since we simply cannot
keep adding terms (on the computer). For most applications this is not a problem, since often the
sum converges quickly and we accept a tiny (not significant) error. In Figure 1.3, we see the graphs
of four approximations of the square wave with N ∈ {5,15,25,99}.
Obviously, the approximations get better the bigger N becomes. Would you say the approximations
are good? Are these approximations good enough that we can call the error ‘not significant’? What
do you notice at the jump discontinuities? This is called Gibbs phenomenon.

Note that if we define the square wave on whole R, then it is not odd any more. Can you explain
why? Hint: What value must an odd function take at 0? Does this have any practical effect on the
Fourier series?
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1.6 Even and odd functions

(1) Fourier sum with N = 5 (2) Fourier sum with N = 15

(3) Fourier sum with N = 25 (4) Fourier sum with N = 99

Figure 1.3: Approximation of the square wave with Fourier sums of different lengths
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2 Systems of linear differential equations

2 Systems of linear differential equations

In this section, we will see how system of linear differential equations can be approached. The struc-
ture of this section partly resembles the structure in the lecture notes of Annette A’Campo-Neuen.9

We already know linear differential equations of the form x′(t) = ax(t), for x : R→ R and a ∈ R.
And we also know that x(t) = Ceat. This solution is quite straightforward. But in the real-world,
many processes, which we describe by differential equations, depend on other processes, which can
also be described by differential equations.

2.1 Systems of first order linear differential equations

This consideration naturally leads us to coupled differential equations. We call such a collection a
system of first order coupled linear differential equations,

x′1(t) = a11(t)x1(t) + . . .+ a1n(t)xn(t) + b1(t) ,
...

x′n(t) = an1(t)x1(t) + . . .+ ann(t)xn(t) + bn(t) .

(2.1)

The coefficients ak` and bk can be constants in R or functions of t, and x1, . . . , xn are the wanted
differentiable real-valued functions. For simplicity we will consider constant coefficients. If all bk

are equal 0, then we say the system is homogeneous, otherwise we call it non-homogeneous. At
first, this system looks quite confusing. But imagine now that you are in Rn and that our n real-
valued functions xk are actually just a single vector-valued function x : R→ Rn, with t 7→ x(t) =

(x1(t), . . . , xn(t))ᵀ ∈ Rn. If all xk are differentiable, then also x is (component-wise) differentiable
and we write x′ = (x′1, . . . , x

′
n)ᵀ.

Let us take a further look at Equation (2.1). We notice that the expressions on the right hand side
look like the vector x(t) was multiplied by a matrix and then a vector was added. Indeed, if we
write

A =


a11 · · · a1n
...

. . .
...

an1 · · · ann

 and b =


b1
...

bn

 ,
we can express the system in Equation (2.1) simply as x′(t) = Ax(t)+b. In additional to the consid-
erable simplification of notation we will see that this approach is a great help in solving systems of
differential equations. For simplicity we will focus on homogeneous systems with constant coeffi-
cients, that is A ∈ Rn×n and b = 0, which take the form

x′(t) = Ax(t) . (2.2)

Notice that for any solutions x1, x2 of Equation (2.2) all linear combinations a1x1 + a2x2 are also
solutions. Hence, the solution set of Equation (2.2) X = {x : R→ Rn |∀t ∈ R : x′(t) = Ax(t)} is a
linear subspace of the vector space V of all differentiable functions from R to Rn. We will see in
Theorem 2.5 that every initial value problem of the form (2.2) with x(0) = x0 ∈ R

n has a unique
solution in V . With this in mind we get the following result.

Proposition 2.1 Let A ∈Rn×n and X = {x :R→Rn |∀t ∈R : x′(t) = Ax(t)}. Then dim X = dimRn = n.

9For additional ideas and many examples consider https://math.unibas.ch/fileadmin/mathe/redaktion/
feupload/skript5_08.pdf and https://math.unibas.ch/fileadmin/mathe/redaktion/feupload/

skript3_05.pdf.
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2.1 Systems of first order linear differential equations

Proof Consider the projection (in diesem Fall eine sogenannte Auswertungsabbildung) X → Rn

given as x 7→ x(0). This map is a linear surjection. By the uniqueness of solutions to initial value
problems it is actually a bijection. Hence, X and Rn are isomorph and thus, dim X = dimRn. �

Let us try and solve Equation (2.2) for the simple case of a diagonal matrix A. We know that a diag-
onal matrix consists of its eigenvalues and we write A = diag(λ1, . . . ,λn). Evaluating Equation (2.2),
we get n (one-dimensional) differential equations of the form x′k(t) = λkxk(t), k ∈ {1, . . . ,n}. So the
system is actually uncoupled and we already know the solutions

x(t) = (c1eλ1t, . . . ,cneλnt)ᵀ , for arbitrary constants c1, . . . ,cn ∈ R .

In fact, we could choose n specific solutions

y1(t) = (eλ1t,0, . . . ,0)ᵀ , y2(t) = (0,eλ2t, . . . ,0)ᵀ , . . . , yn(t) = (0, . . . ,0,eλnt)ᵀ ∈ Rn .

These are linearly independent, since det((y1(t)| · · · |yn(t))) = eλ1t · · ·eλnt , 0 for all t ∈ R. So, by
Proposition 2.1, {y1, . . . ,yn} forms a basis of X. Indeed, we quickly realise that we can write every
solution as a linear combination of all yk as x = c1y1 + . . .+ cnyn and that if x = 0, then all ck must
be 0.
We call such a basis a fundamental system of solutions (Fundamentalsystem der Differentialgleichung).
Furthermore, we note that the yk are all of the form eλktνk, where νk are the eigenvectors (in this
case the standard basis of Rn) of A corresponding to the eigenvalues λk. It is natural to ask if this is
true for arbitrary matrices. Luckily, we can affirm this.

Proposition 2.2 Let ν ∈ Rn be an eigenvector of a matrix A ∈ Rn×n corresponding to the eigenvalue
λ . Then x(t) = eλtν satisfies Equation (2.2).

Proof A short calculation yields

Ax(t) = A(eλtν) = eλtAν = eλtλν =
d
dt

(eλtν) = x′(t) ,

and hence, x is a solution. �

Exercise 2.3 Intuitively, the next best thing in this context would probably be diagonalisable
matrices. Explain what we mean by this and derive a fundamental system of solutions of (2.2) given
a diagonalisable matrix A with eigenvalues λ1, . . . ,λn and corresponding eigenvectors ν1, . . . , νn.
Use Proposition 2.2 and argue that eλ1tν1, . . . ,eλntνn are linearly independent. Maybe recall Sec-
tion 0.4.5.

We will discuss these new concepts on a practical example.

Exercise 2.4 In this exercise, we want to find a fundamental system of solutions to the following
linear homogeneous system of first order differential equations,

x′1(t) = −x1(t) + 2x2(t) ,

x′2(t) = −3x1(t) + 4x2(t) .
(2.3)

By following the steps below, we revise many concepts we have learned so far, for example in this
section and Section 0.4.4.

1. Set x = (x1, x2)ᵀ and find a (2×2)-matrix A to express (2.3) in the form x′(t) = Ax(t).
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2 Systems of linear differential equations

2. Write down the characteristic polynomial and calculate its roots to find the eigenvalues of A.
You should get λ1 = 1 and λ2 = 2.

3. Derive the corresponding eigenvectors and briefly argue that they are linearly independent. The
eigenvectors should be multiples of v1 = (1,1)ᵀ and v2 = (2,3)ᵀ.

4. Write down the fundamental system of solutions according to Exercise 2.3. Check that indeed
every linear combination of this fundamental system solves Equation (2.3).

Having covered diagonal and diagonalisable matrices, we move on to arbitrary matrices. As prom-
ised in Section 0.4.6, we will now prove a very useful application of the matrix exponential.

Theorem 2.5 Let A ∈ Rn×n and x0 ∈ R
n be given. The system of homogeneous linear first order

differential equations (2.2) with the initial condition x(0) = x0 yields a unique solution x : R→ Rn

given by

x(t) = etAx0 , for all t ∈ R .

The columns of etA form a fundamental system of solutions of (2.2).

Proof Let x(t) = etAx0 and recall that we derived d
dt e

tA = AetA in Equation (0.8). This implies
x′(t) = Ax(t). The initial condition is also satisfied, since x(0) = 1nx0 = x0.
To show uniqueness, we assume that y is an arbitrary solution of (2.2) with y(0) = x0. Consider the
map c : R→ Rn with t 7→ e−tAy(t) and calculate its derivative. We find that

c′(t) = −Ae−tAy(t) + e−tAy′(t) = −Ae−tAy(t) + e−tAAy(t) = 0 .

The last equality holds, since A and e−tA commute. Hence, the function c is constant, and since y
satisfies y(0) = x0, we have for all t ∈ R

c(t) = c(0) = 1nx0 = x0 ,

proving that in fact, y = x.
For the last assertion we notice that the columns of etA, let us denote them by a1, . . . ,an, are linearly
independent, since by Proposition 0.37, det(etA) , 0. Multiplying the k-th standard basis vector
ek = (0, . . .0,1,0 . . . ,0)ᵀ by etA we get its k-th column, etAek = ak. Hence, ak is a solution to (2.2)
with the initial condition ak(0) = ek, proving the assertion. �

Exercise 2.6 We left some parts of the proof of Theorem 2.5 incomplete. Convince yourself that the
following are correct.

1. Show that e−tA and A commute, recalling that we already know that etA and A commute.
2. Show that d

dt (e
tAx0) = d

dt (e
tA)x0. How does the differential operator on the left hand side differ

from the one on the right hand side?

Exercise 2.7 We still need to show Assertion 3 of Proposition 0.37. We want to show that if two
matrices A,B ∈ Rn×n commute, then eA+B = eAeB.

1. First of all, we need an auxiliary results: we need to show that if A and B commute, then B
and etA commute. Define the vector-valued function x : R→ Rn by x(t) = BetAc, for an arbitrary
c ∈ Rn. Its derivative is given by x′(t) = BAetAc. Since AB = BA, we have x′(t) = ABetAc = Ax(t).
But Theorem 2.5 tells us that x is uniquely given by x(t) = etAx(0) = etABc. Hence, we must have
BetA = etAB, for all t ∈ R.

2. To show eA+B = eAeB, define the function x(t) = etAetBc, for an arbitrary c ∈ Rn. Proceed as in
the first part and use the result derived in the first part.
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Example 2.8 We want to calculate the exponential of the (2×2)-matrix A =
(

1 1
0 1

)
. Since this matrix

is not diagonalisable (you can check this with Proposition 0.34), we cannot use the procedure
outlined in Section 0.4.5 to calculate the powers of A. However, in simple cases like this we can
sometimes ‘guess’ the solution. Let us calculate a few powers and see if we find a pattern,

A2 =

(
1 2
0 1

)
, A3 =

(
1 3
0 1

)
, A4 =

(
1 4
0 1

)
.

It seems that Ak =
(

1 k
0 1

)
, for k ∈N. We can prove this by induction. We have already established the

induction start. The induction step goes as follows,

Ak+1 = AAk =

(
1 1
0 1

)(
1 k
0 1

)
=

(
1 k + 1
0 1

)
.

With this it is straightforward to calculate etA,

etA =

∞∑
k=0

(tA)k

k!
=

∑∞k=0
tk
k!

∑∞
k=0

ktk
k!

0
∑∞

k=0
tk
k!

 =

et t
∑∞

k=1
tk−1

(k−1)!
0 et

 =

(
et t

∑∞
k=0

tk
k!

0 et

)
=

(
et tet

0 et

)
.

Exercise 2.9 Calculate the matrix exponentials of

B =

(
λ 1
0 λ

)
and C =

(
a −b
b a

)
, for λ,a,b ∈ R .

Find the fundamental systems of solutions for x′(t) = Bx(t) and x′(t) = Cx(t).
Hint: Show by induction that Bk =

(
1 kλk−1

0 1

)
and use the procedure outlined in Section 0.4.5 to

calculate Ck.

Let us briefly discuss one more useful way to calculate matrix exponentials. As discussed in Sec-
tion 0.4.5, we can quite easily calculate powers of a diagonalisable matrix A. Let P and P−1 be
such that P−1AP = D is diagonal. Since the matrix exponential is a series of powers, it might not
be surprising that

eA = ePDP−1
=

∞∑
k=0

(PDP−1)k

k!
=

∞∑
k=0

PDkP−1

k!
= P

 ∞∑
k=0

Dk

k!

P−1 = PeDP−1 .

The exponential eD is easily computed. If you calculated etC in Exercise 2.9, you will have used
this fact. However, not all matrices are diagonalisable.
It turns out that the diagonal form of a diagonalisable matrix is just a special case of what is known
as the Jordan normal form (Jordansche Normalform). Every matrix whose eigenvalues are con-
tained in the field over which the vector space is defined exhibits such a form. For example, for
every matrix A ∈ Rn×n with real eigenvalues there exists an invertible matrix P such that P−1AP
takes the form

P−1AP = J = Jλ1 ⊕ . . .⊕ Jλr =


Jλ1

. . .

Jλr

 ,
where ⊕ denotes the direct sum of two matrices and each Jλk is called a Jordan block corresponding
to λk and is a square matrix of the form

Jλk =


λk 1

λk
. . .
. . . 1

λk

 .
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2 Systems of linear differential equations

The number of Jordan blocks corresponding to a given eigenvalue λk is equal to the geometric
multiplicity of λk and the sum of sizes of all Jordan blocks corresponding to λk equals its algebraic
multiplicity. We strongly encourage you to read some additional literature on the Jordan normal
form, as we cannot go into much detail here. The point we want to make is the following. Just as
in the diagonalisable case, we have for a Jordan normal form P−1AP = J,

eA = PeJP−1 .

It turns out that eJ is the direct sum of the exponential of each block, eJ = eJλ1 ⊕ . . .⊕ eJλr . Now
every Jordan block is of the form Jk = λk1+ N, where N is a nilpotent matrix of the form

N =

0 1

1
0




this means there exists an n ∈ N such that N j = 0 for all j ≥ n. With a short consideration we
convince ourselves that λk1 and N commute and thus, by Exercise 2.7, eλk1+N = eλk1eN . Now
eλk1 is readily calculated, and since N is nilpotent, we get eN =

∑∞
k=0

Nk

k! =
∑n−1

k=0
Nk

k! is just a sum of
powers.

Let us consider an example.

Example 2.10 Let B =
(
λ 1
0 λ

)
from Exercise 2.9 with λ ∈ R. We already know that B is not diag-

onalisable. However, it has Jordan normal form (with a single Jordan block) and we can write
B = λ12 +

(
0 1
0 0

)
= λ12 + N. Notice that Nk = 0, for k ≥ 2. Hence,

etB = etλ12etN = etλ12 ((tN)0 + (tN)1) = etλ(12 + tN) = etλ
(
1 t
0 1

)
,

the solution you should have derived in Exercise 2.9.

Exercise 2.11 Consider the following two matrices,

A =


−3 −2 −6 −5
2 1 2 1
3 2 6 9
−1 0 −1 −4

 and P =


−1 −1 −1 −1
1 1 −1 0
−1 0 1 1
1 0 0 0

 .
We picked them nicely so that P−1AP = J is the Jordan normal form of A. Calculate eA.
Hint: For this you will calculate P−1, J, eJ , and finally eA. To calculate eJ you will use that eJ is
the direct sum of the exponential of each block, eJ = eJλ1 ⊕ . . .⊕ eJλr .

2.2 Linear multi-compartment models

In this section, we will see how systems of linear differential equations arise. We will focus on the
derivation of the systems and in particular on the derivation of the corresponding matrix.
For more material, consider also the slides (Kapitel 3 - Modelle).

In the following, we will discuss certain linear interactions between multiple compartments. We
will assume that each compartment has an assigned quantity of some drug or something similar.
The interactions are assumed to take place at constant rates, and thus, we will use indexed constants
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2.2 Linear multi-compartment models

to represent these. Let us agree to use the first index to denote the number of the compartment to
which we add the quantity and the second index to denote the number of the compartment from
which the quantity is subtracted. Consider the following short example.

Example 2.12 Let y1(t) and y2(t) be the quantities of a drug in organs 1 and 2 at time t. We assume
that the drug is introduced to Organ 1 at a rate M(t), where it is degraded at a constant rate a1 and
also passed on to Organ 2 at a rate b12. In Organ 2, the drug is degraded at rate a2 and passed back
to Organ 2 at a rate b21. We can visualise these relationships in the diagram in Figure 2.1.

Quantity y1(t) y2(t)

M(t) // Organ 1

��
b12

99Organ 2

b21

zz
// a2

a1

Figure 2.1: Example of a linear multi-compartment model.

From Figure 2.1 we can directly derive the differential equations,

y′1(t) = M(t)− (a1 + b12)y1(t) + b21y2(t) ,

y′2(t) = b12y1(t)− (b21 + a2)y2(t) .

Hence, defining for every t, y = (y1,y2)ᵀ, y′ = (y′1,y
′
2)ᵀ, g = (M,0)ᵀ, and

A =

(
−(a1 + b12) b21

b12 −(b21 + a2)

)
,

we can compactly express this model as y′(t) = Ay(t) + g(t). With the tools from previous sections,
you can already solve this for M = 0.

Exercise 2.13 Consider the following 2-compartment model. Assume that the corresponding quant-
ity of a drug in compartment K j at time t is y j(t), for j ∈ {1,2}.

K1

b21

99 K2

b12

yy

Write down the system of differential equations which represents this model in matrix notation.
Solve this system for b12 = b21 = 1.

Example 2.14 Let us consider a special compartment model in the form

K1 b1

// K2 b2

// K3 b3

// . . .
bn−2

// Kn−1 bn−1

// Kn

The system is given by

y′1 = −b1y1 , y′2 = b1y1−b2y2 , . . . , y′n = bn−1yn−1 .

37



2 Systems of linear differential equations

Convince yourself that the system can be written as y′(t) = Ay(t) with

A =

−b1

b1

−bn−1

bn−1 0




.

Exercise 2.15 Consider the following model.

K1

b21

@@K2

b32

@@

b12

��
K3 BB

b23

��
. . .

��

??Kn−1
��

bn,n−1

>>Kn

bn−1,n

~~

Derive the system of differential equations and derive the corresponding matrix.

2.3 Linear differential equations of n-th order

In this section, we will consider a single differential equation of n-th order. Interestingly, we can
translate this equation to a system of first order equations. Similarly to the previous section, we
are able to solve this system. Consider the following n-th order homogeneous linear differential
equation,

x(n) + an−1x(n−1) + . . .+ a1x′+ a0x = 0 . (2.4)

To generate n first order differential equations we define the vector-valued function y : R→ Rn as
y = (x, x′, . . . , x(n−1))ᵀ. Convince yourself that if x satisfies Equation (2.4), then y is a solution to the
following system

y′1(t) = y2(t) ,
...

y′n−1(t) = yn(t) ,

y′n(t) = −a0y1(t)−a1y2(t)− . . .−an−1yn(t) .

Notice that the last equality is exactly Equation (2.4). We can now summarise the coefficients of
this system in a matrix

A =


0 1

. . .
. . .

0 1
−a0 · · · −an−2 −an−1

 ∈ Rn×n ,

so that the system takes the form

y′(t) = Ay(t) .

In analogy to Section 2.1, we need to find the eigenvalues of A. So we want to derive the charac-
teristic polynomial of A. We will find that it is given by

pA(λ) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 . (2.5)
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2.3 Linear differential equations of n-th order

To show this, we can use induction over n.
For n = 1, the differential equation reads x(1) + a0x = 0 and thus, we have A = −a0 ∈ R. Hence,

pA(λ) = det(λ− (−a0)) = λ+ a0 .

For the induction step n→ n+1, assume that Equation (2.5) holds true. We use the Laplace formula
with respect to the first column and get

pA(λ) = det(λ1n+1−A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
λ −1

. . .
. . .

λ −1
a0 · · · an−1 λ+ an

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)2λ ·

∣∣∣∣∣∣∣∣∣∣∣∣∣
λ −1

. . .
. . .

λ −1
a0 · · · an−1 λ+ an

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)n+2a0 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣
λ −1

. . .
. . .

λ −1
a0 · · · an−1 λ+ an

∣∣∣∣∣∣∣∣∣∣∣∣∣
= λ(λn + anλ

n−1 + . . .+ a2λ+ a1) + (−1)n+2+na0 = λn+1 + anλ
n + . . .+ a2λ

2 + a1λ+ a0 .

Notice that the characteristic polynomial (2.5) resembles the differential equation (2.4). So we call
the polynomial the characteristic polynomial of the differential equation and we call A (or more
often its transpose) the Frobenius companion matrix to that polynomial.
In analogy to the previous section, we know that the solution set is an n-dimensional vector space,
so the same is true for the solution set of (2.4). We adopt the same terminology and call a set of
functions {y1, . . . ,yn} a fundamental system of solutions, if

Y1 =
(
y1,y′1, . . . ,y

(n−1)
1

)ᵀ
, . . . ,Yn =

(
yn,y′n, . . . ,y

(n−1)
n

)ᵀ
is a basis of the solution set of the corresponding system of first order differential equations. To
check linear independence, we calculate what is known as the Wronskian (Wronski-Determinante),

WY1,...,Yn(t) = det((Y1| · · · |Yn)) =

∣∣∣∣∣∣∣∣∣∣
y1 · · · yn
...

. . .
...

y(n−1)
1 · · · y(n−1)

n

∣∣∣∣∣∣∣∣∣∣ .
To find solutions, we have a very useful result.

Theorem 2.16 Let p be the characteristic polynomial in (2.5) with real roots λ1, . . . ,λr ∈ R and
multiplicity m1, . . . ,mr ∈ N. Then for j ∈ {1, . . . ,r} and k ∈ {0, . . . ,mk −1} the functions tkeλ jt form a
fundamental system of solutions of (2.4).
If the set of roots exhibits a pair of complex conjugate numbers λ = a + ib and λ̄ = a− ib with
multiplicity m, then for k ∈ {0, . . . ,m− 1} the functions tkeat cos(bt) and tkeat sin(bt) are linearly
independent solutions of (2.4).

Example 2.17 Consider the differential equation

x(3)−2x(2)− x(1) + 2x = 0 .

Its characteristic polynomial is given by p(λ) = λ3 −2λ2 −λ+ 2 = (λ−1)(λ+ 1)(λ−2). Hence, the
roots are given by λ1 = 1, λ2 = −1, and λ3 = 2 and thus, according to Theorem 2.16, a fundamental
system of solutions is given by the collection

x1(t) = et , x2(t) = e−t , and x3(t) = e2t .
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2 Systems of linear differential equations

Indeed, in this case the corresponding solutions

X1 =

x1
x′1
x′′1

 = et

11
1

 , X2 = e−t

 1
−1
1

 , and X3 = e2t

12
4


are the eigenvectors of the companion matrix A =

(
0 1 0
0 0 1
−2 1 2

)
.

Exercise 2.18 Derive fundamental systems of solutions of the following differential equations.

x(3)−5x(2) + 3x(1) + 9x = 0 , x(2) + x = 0 .

Write down and factorise the characteristic polynomials to find its roots and then use Theorem 2.16.
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3 Laplace Transformation

The Laplace transformation is an important and powerful tool in mathematics. Its applications
reach from image and signal processing to solving partial differential equations. In this section, we
introduce the Laplace transformation and its most important properties. At the end of this section,
we will see how it helps us to solve differential equations.

3.1 Definition and Examples

Definition 3.1 The Laplace transform of a function f : R≥0 → C is a function L f : C→ R and is
defined by

L f (s) =

∫ ∞

0
e−st f (t)dt . (3.1)

The symbol L denotes the Laplace operator which takes an f : R≥0→ C and maps it to its Laplace
transform L f .10 Most common notations for the Laplace transform are L f = L{ f } = F. If we want
to calculate the Laplace transform of a formula (without name) we write L( f (t)). If we consider
the Laplace transform point-wise we write L f (s) = L{ f }(s) = L( f (t))(s) = F(s), for s ∈ C.

As you might imagine, using an arbitrary F to denote the Laplace transform of f can be confusing.11

However, if you want to use the notation F rather then L f (which is exactly the same function) it
is common to use the Doetsch-symbol to indicate the Laplace transform of the function f :

f � F.

This sort of connection between to functions is sometimes called correspondence. It is particularly
useful when we simply want to indicate the correspondence between two formulae, as in

t �
1
s2 ,

meaning that the Laplace transform of f : R≥0→ R given by t 7→ t is L f (s) = 1
s2 . Nevertheless, we

encourage you to define your functions, stating domain and co-domain.

Let us define sufficient conditions for the existence of a Laplace transform.

Definition 3.2 We define the set E of all functions f : R→ C such that

1. f = 0 on R<0,
2. | f (t)| ≤Ceαt for some constants α ∈ R, C ∈ R>0, and all t ∈ R,
3. f is piecewise continuous.

The first condition allows us to restrict the domain of f to R≥0. This is necessary in Definition 3.1
and it is sometimes useful to have functions on R rather than R≥0. Conversely, if we consider
f : R≥0→ R, then we implicitly set f = 0 on R<0 to get an f defined on R. For f : R→ R which are
not 0 on R<0, we just set f = 0 on R<0, as in the example above with t 7→ t.

10In German for example, we actually differentiate between the function F = L f which is called ‘Laplace-
Transformierte der Funktion f ’ and L which is called ‘Laplace-Transformation’. In English, both of them are called
‘Laplace transform’. This is why we will call L the Laplace operator.

11Often F denotes the primitive integral of f , that is F′ = f , which has nothing to do with Laplace transforms.
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3 Laplace Transformation

If f satisfies the second condition, we say ‘ f is of exponential order’, meaning that the rate of
growth is at most that of exponential functions. Furthermore, we define the smallest such α as

α f = inf{α ∈ R |∀t ∈ R≥0 : | f (t)| ≤Ceαt} .

The last conditions states that f is only allowed to have removable and jump discontinuities, no
infinite or essential discontinuities are allowed. The following result shows that these conditions
are sufficient for the existence of the Laplace transform.

Theorem 3.3 Let f ∈ E, then L f is well-defined on {s ∈ C |R(s) > α f }. Furthermore, we have
limR(s)→∞L f (s) = 0.

Proof Let s0 = x0 + iy0 ∈ C such that R(s0) = x0 > α f . In particular there is an α < x0 and a C > 0
such that Condition 2 in Definition 3.2 is satisfied. Using that for any y ∈ R we have |eiy| = 1, we
get

|e−s0t f (t)| = |e−(x0+iy0)t|| f (t)| = e−x0t| f (t)| ≤Ce(α−x0)t .

Therefore,

|L f (s0)| =
∣∣∣∣∫ ∞

0
e−s0t f (t)dt

∣∣∣∣ ≤ ∫ ∞

0
|e−s0t f (t) |dt ≤

∫ ∞

0
Ce(α−x0)t dt =

C
x0−α

<∞ ,

and in particular, |L f (s0)| ≤ C
x0−α

x0→∞
−→ 0. �

Example 3.4 We consider a few short examples to get a feeling how this transform works. In all
examples we directly calculate the Laplace transforms using Definition 3.1.

1. Let us find the Laplace transform of the Heaviside step function Θ : R→ {0,1} defined as

Θ(t) =

0 t < 0 ,
1 t ≥ 0 .

First of all, we need to check that Θ ∈ E. By definition Θ = 0 on R<0 and has only one jump at t = 0.
It is of exponential order with α f = 0 and C = 1. Hence, for any s ∈ C with R(s) > 0 the Laplace
transform of Θ is well-defined and given by

L f (s) =

∫ ∞

0
e−stΘ(t)dt =

∫ ∞

0
e−st dt =

1
−s

e−st
∣∣∣∣∞
t=0

= 0−
1
−s

=
1
s
.

2. Consider the identity id : R≥0 → R≥0, id(t) = t. As an exercise, explain how Condition 1 and
Condition 3 in Definition 3.2 are satisfied. Show that also Condition 2 is satisfied with α f = 0.
Therefore, the Laplace transform is defined for s ∈ C with R(s) > 0 and given by

L f (s) =

∫ ∞

0
e−stt dt = −

e−stt
s

∣∣∣∣∞
t=0︸      ︷︷      ︸

=0

+

∫ ∞

0

e−st

s
dt = −

e−st

s2

∣∣∣∣∞
0

=
1
s2 .

In the second equality, we used integration by parts. Also note that by L’Hôpital’s rule we have

lim
t→∞
|e−stt| = lim

t→∞

t
eR(s)t = lim

t→∞

1
R(s)eR(s)t = 0 .
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3. Next we find the Laplace transform of f : R≥0 → [−1,1] given by f (t) = sin(at), with a > 0.
Show that f ∈ E and that α f = 0. Then for any s ∈ C with R(s) > 0 we have

L f (s) =

∫ ∞

0
e−st sin(at)dt =

1
2i

∫ ∞

0
e−st(eiat − e−iat)dt =

1
2i

(
1

s− ia
−

1
s + ia

)
=

1
2i

(
s + ia

s2 + a2 −
s− ia

s2 + a2

)
=

a
s2 + a2 .

Note that we can also use integration by parts twice as∫ ∞

0
e−st sin(at)dt = −

e−st

a
cos(at)

∣∣∣∣∞
t=0︸               ︷︷               ︸

= 1
a

−
s
a

∫ ∞

0
e−st cos(at)dt

=
1
a
−

s
a

( e−st

a
sin(at)

∣∣∣∣∞
t=0︸            ︷︷            ︸

=0

+
s
a

∫ ∞

0
e−st sin(at)dt

)
=

1
a
−

s2

a2

∫ ∞

0
e−st sin(at)dt .

Then solving this equation for the integral we get∫ ∞

0
e−st sin(at)dt =

a
s2 + a2 .

Exercise 3.5 Now you can practice at some more examples. Show that the following functions are
contained in E and calculate their Laplace transforms stating their domains.

1. Let f1 : R≥0→ R with f1(t) = 1{a≤t≤b}(t), where 0 ≤ a ≤ b, and show that L f1(s) = e−sa−e−sb

s .
2. Let f2 : R≥0→ R be the n-th power f2(t) = tn, where n ∈ N, and show that L f2(s) = n!

sn+1 .
3. Let f3 : R≥0→ R be the cosine f3(t) = cos(at), with a > 0, and show that L f3(s) = s

s2+a2 .
4. Let f4 : R≥0→ R be the exponential function f4(t) = eat, and show that for s > a, L f4(s) = 1

s−a .

3.2 Elementary properties of the Laplace Transformation

The Laplace transform has many interesting and useful properties. We will prove the most import-
ant ones and consider some examples. The following results are valid for s ∈ C with sufficiently
large real part. Except for the linearity property below, we will omit giving the half-plane domain.

Proposition 3.6 (Linearity) The Laplace operator L is complex-linear. This means that for f ,g ∈
E with Laplace transforms L f , Lg and two constants a,b ∈ C we have a f + bg ∈ E with

L{a f + bg} = aL f + bLg .

Proof If f and g are 0 on R<0, then so is a f + bg. The same holds true for piecewise continuity on
R. If | f (t)| ≤C1eα1t and |g(t)| ≤C2eα2t for all t ∈ R, then

|a f (t) + bg(t)| ≤ |a|| f (t)|+ |b||g(t)| ≤Ceαt ,

for C = 2max{|a|C1, |b|C2} and α = max{α1,α2}. Thus, a f + bg ∈ E. Using Definition 3.1 and
linearity of the integral, we get for s ∈ C with R(s) > max{α f1 ,α f2}

L{a1 f1 + a2 f2}(s) =

∫ ∞

0
e−st(a1 f1(t) + a2 f2(t))dt

= a1

∫ ∞

0
e−st f1(t)dt + a2

∫ ∞

0
e−st f2(t)dt

= a1L f1(s) + a2L f2(s) ,

proving the assertion. �
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Example 3.7 Consider the function f : R≥0→ R defined by f (t) = 3t−5t2 + 3sin(t). The results in
Example 3.4 and Exercise 3.5 and the linearity property give us for s ∈ C with R(s) > 0

L f (s) = 3L(t)(s)−5L(t2)(s) + 3L(sin(t))(s) = 3
1
s2 −5

2
s3 + 3

1
1 + s2 =

3
s2 −

10
s3 +

3
1 + s2 .

Proposition 3.8 (Time scaling) Consider f ∈ E and an a> 0. Then the functionR≥0 3 t 7→ f (at) ∈R
belongs to E and has the Laplace transform

L( f (at))(s) =
1
a
L( f (t))

( s
a

)
.

Proof A few considerations show that this function belongs to E. Then using the substitution t̂ = at
we get

L( f (at))(s) =

∫ ∞

0
e−st f (at)dt =

1
a

∫ ∞

0
e−

s
a t̂ f (t̂)dt̂ =

1
a
L f

( s
a

)
,

proving the assertion. �

If 0 < a < 1, then we speak of dilation. In case a > 1, we speak of contraction.

Example 3.9 Let us calculate the Laplace transform of the function f : R≥0 → R given by f (t) =

sin(3t). According to the time scaling property, we have L(sin(3t))(s) = 1
3L(sin(t))

(
s
3

)
. From Ex-

ample 3.4 we already know that L(sin(t))(s) = 1
1+s2 , and thus,

L(sin(3t))(s) =
1
3

1

1 +
(

s
3

)2 =
3

9 + s2 .

For which s ∈ C is this transform well-defined?

Proposition 3.10 (Shifting) Let f ∈ E and h > 0. The following results hold:

1. Shifting to the right: L( f (t−h))(s) = e−hsL f (s) ,
2. Shifting to the left: L( f (t + h))(s) = ehs

(
L f (s)−

∫ h
0 e−st f (t)dt

)
.

Proof As an exercise argue that t 7→ f (t− h) belongs to E, while (strictly speaking) t 7→ f (t + h)
does not. Explain why the Laplace transform of t 7→ f (t + h) exists.

1. Using the substitution t̂ = t−h and since f (t) = 0 for t < 0, we get

L( f (t−h))(s) =

∫ ∞

0
e−st f (t−h)dt =

∫ ∞

−h
e−s(t̂+h) f (t̂)dt̂ = e−hs

∫ ∞

0
e−st̂ f (t̂)dt̂ = e−hsL f (s) .

2. Similarly, we use the substitution t̂ = t + h. But now, we have to add zero as 0 =
∫ h

0 e−st f (t)dt−∫ h
0 e−st f (t)dt to get the desired form,

L( f (t + h))(s) =

∫ ∞

0
e−st f (t + h)dt =

∫ ∞

h
e−s(t̂−h) f (t̂)dt̂ = ehs

∫ ∞

h
e−st̂ f (t̂)dt̂

= ehs
(∫ ∞

h
e−st̂ f (t̂)dt̂ +

∫ h

0
e−st f (t)dt−

∫ h

0
e−st f (t)dt

)
= ehs

(∫ ∞

0
e−st̂ f (t̂)dt̂−

∫ h

0
e−st f (t)dt

)
= ehs

(
L f (s)−

∫ h

0
e−st f (t)dt

)
,

proving the second assertion. �
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3.2 Elementary properties of the Laplace Transformation

Example 3.11 Consider f : R→ R given by the identity on R≥0 and by 0 on R<0, and let h > 0.
Let us find the Laplace transform of g1 : t 7→ f (t− h) and g2 : t 7→ f (t + h). Firstly, we know from
Example 3.4 that L f (s) = 1

s2 . Secondly, applying the first shifting property, we obtain

Lg1(s) = e−hsL f (s) =
e−hs

s2 .

For the second function we use the second shifting property and a similar calculation as in Ex-
ample 3.4 Part 2 and we get

Lg2(s) = esh
(
L f (s)−

∫ h

0
e−st f (t)dt

)
= esh

(
1
s2 −

∫ h

0
e−st t dt

)
= esh

(
1
s2 +

e−stt
s

∣∣∣∣h
t=0

+

∫ h

0

e−st

s
dt

)
= esh

(
1
s2 +

he−sh

s
+

e−st

s2

∣∣∣∣h
t=0

)
= esh

(
1
s2 +

he−sh

s
+

e−sh

s2 −
1
s2

)
=

hs + 1
s2 .

Proposition 3.12 (Contraction) Let f ∈ E and λ ∈ C. Then t 7→ e−λt f (t) belongs to E and

L(e−λt f (t))(s) = L f (s +λ) .

Proof A few short considerations show that the function lies in E and we get

L(e−λt f (t))(s) =

∫ ∞

0
e−ste−λt f (t)dt =

∫ ∞

0
e−(s+λ)t f (t)dt = L f (s +λ).

�

Example 3.13 Find the Laplace transform of f : R≥0→ R defined by f (t) = e−2tt. By Example 3.4,
we know that L(t)(s) = 1

s2 , and hence, by Proposition 3.12, we have L f (s) = 1
(s+2)2 .

Exercise 3.14 Test your understanding of the properties derived thus far by solving the following
exercises. Find the Laplace transforms of

1. f1 : R≥0→ R defined by f1(t) = e−3t sin(t),
2. f2 : R≥0→ R defined by f2(t) = t−2, and
3. f3 : R≥0→ R defined by f3(t) = 4e−3t sin(t) + 2(t−2).

Lemma 3.15 (Derivative property) Let f ∈ E be a differentiable function, such that f ′ ∈ E. Then
the Laplace transform of f ′ is given by

L f ′(s) = sL f (s)− f (0) .

Proof Integrating by parts gives us

L f ′(s) =

∫ ∞

0
e−st f ′(t)dt = e−st f (t)

∣∣∣∣∞
t=0

+ s
∫ ∞

0
e−st f (t)dt = − f (0) + sL f (s) ,

proving the assertion. �

Remark 3.16 This is an important result and lies behind future applications that involve solving
linear differential equations. The key property is that the transform of a derivative f ′ does not itself
involve a derivative.
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3 Laplace Transformation

Example 3.17 Let us determine the Laplace transform of the cosine function based on the given
Laplace transform of the sine function. We know that L(sin(at))(s) = a

a2+s2 . Since cos(at) =
1
a (sin(at))′, we get

L(cos(at))(s) =
1
a
L((sin(at))′)(s) =

1
a

sa
a2 + s2 =

s
a2 + s2 .

Compare this result to the the result you got in Exercise 3.5.

We can actually generalise Lemma 3.15 to any n-th derivative, provided that the derivatives stay in
E. Note that here f and its first n−1 derivatives appear, which are all evaluated at 0.

Proposition 3.18 (General derivative property) Let f be n ∈ N times differentiable such that
f (n) ∈ E, then

L f (n)(s) = snL f (s)−
n∑

k=1

sn−k f (k−1)(0) . (3.2)

Proof We prove this result by induction. With Lemma 3.15 we have already established the induc-
tion start for n = 1. So for the induction hypothesis we assume that Equation (3.2) holds for n−1.
We want to show that it also holds for n. Using integration by parts we get

L f (n)(s) =

∫ ∞

0
e−st f (n)(t)dt = e−st f (n−1)(t)

∣∣∣∣∞
0

+ s
∫ ∞

0
e−st f (n−1)(t)dt

= − f (n−1)(0) + sL f (n−1)(s) IH
= − f (n−1)(0) + s

(
sn−1L f (s)−

n−1∑
k=1

sn−1−k f (k−1)(0)
)

= snL f (s)−
n−1∑
k=1

sn−k f (k−1)(0)− f (n−1)(0) = snL f (s)−
n∑

k=1

sn−k f (k−1)(0) .

Hence, we have shown Equation (3.2) and by induction it holds for all n ∈N, given that f is n times
differentiable. �

Proposition 3.19 (Differentiability) Let L f be the Laplace transform of a given function f . Then
L f is infinitely differentiable and its derivatives are given for n ∈ N by

(L f )(n) = L((−t)n f (t)). (3.3)

Proof We prove the assertion by induction. First we show the induction start for n = 1.

d
ds

L f (s) =
d
ds

∫ ∞

0
e−st f (t)dt =

∫ ∞

0

d
ds

e−st f (t)dt =

∫ ∞

0
−te−st f (t)dt = L(−t f (t))(s) .

Next, assume that Equation (3.3) holds for n−1 and we show that it also holds for n. Basically the
same calculation yields

d
ds

(L f )(n−1)(s) IH
=

d
ds

L((−t)n−1 f (t))(s) =
d
ds

∫ ∞

0
e−st(−t)n−1 f (t)dt

=

∫ ∞

0

d
ds

e−st(t)n−1 f (t)dt =

∫ ∞

0
e−st(−t)n f (t)dt = L((−t)n f (t))(s) .

Thus, by induction, Equation (3.3) holds for any n ∈ N, proving the assertion. �
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3.2 Elementary properties of the Laplace Transformation

Example 3.20 Let f : R≥0 → R be given by f (t) = e−at. We want to find (L f )′′. So one approach
would be to find L f and differentiate it twice. Ok, let’s do that: set Θ = 1R≥0 and note that f (t) =

e−at Θ(t) (extended to R). So with the contraction property from Proposition 3.12, we get L f (s) =

LΘ(s + a), and from Example 3.4 we know LΘ(s + a) = 1
s+a . So we are left to differentiate this

expression twice, which yields

(L f )′′(s) = (LΘ)′′(s + a) =
2

(s + a)3 .

In another approach, we could make use of Proposition 3.19. Thereby, and by linearity, we have
(L f )′′(s) = L((−t)2e−at)(s) = L(t2e−at)(s). Now, using the contraction property again and Exer-
cise 3.5, we get

(L f )′′(s) = L(t2e−at)(s) = L(t2)(s + a) =
2

(s + a)3 .

Summarising, the first approach includes basic functions, but we are left with differentiating,
whereas the second approach includes more involved function, but we do not need to differenti-
ate. So the choice really depends on your preferences and the underlying problem.

Proposition 3.21 (Integration property) Let f ∈ E and let L f be its Laplace transform. The
Laplace transform of g : R≥0→ R defined by g(t) =

∫ t
0 f (u)du is given by

Lg(s) =
L f (s)

s
(3.4)

Proof Note that g′(t) = f (t) for all points t of continuity of f . Hence, by Lemma 3.15 we have

sLg(s) = Lg′(s) + g(0) =

∫ ∞

0
e−st f (t)dt + 0 = L f (s) .

Dividing both side by s yields the assertion. �

Exercise 3.22 Thus far, we have seen different ways to calculate the Laplace transform of the
same functions. In this exercise, you will calculate known Laplace transforms through yet another
approach. You can check your results from the examples above.

1. Using Proposition 3.21 and your knowledge of L(sin(at)) find the Laplace transform of the
function t 7→ cos(at).
2. Similarly, find the Laplace transform of t 7→ t2 given your knowledge of L(t).

State the domain of the functions you use and explain your choice.

Proposition 3.23 (Integration) Let f ∈ E. The integral of its Laplace transform is given by∫ ∞

s
L f (u)du = L(t−1 f (t))(s). (3.5)

Proof Set g(t) = t−1 f (t). By Proposition 3.19 we have L f = L(tg(t)) = −(Lg)′. Hence, for s, s0
with sufficiently large real parts we have

Lg(s)−Lg(s0) =

∫ s0

s
L f (u)du .

Since limR(s0)→∞Lg(s0) = 0, the assertion follows. �
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3 Laplace Transformation

Example 3.24 Find the Laplace transform of the function given by f (t) = t2, given that we know
L(t3)(s) = 6

s4 . Using Proposition 3.23 we have

L(t2)(s) = L(t−1t3)(s) =

∫ ∞

s

6
t4 dt = −

2
t3

∣∣∣∣∞
t=s

=
2
s3 .

As you have already seen in Exercise 3.5 and Exercise 3.22.

Definition 3.25 (Convolution) The convolution of the functions f ,g : R→ R is the function f ∗g :
R→ R defined as

( f ∗g)(t) = f ∗g(t) =

∫ ∞

−∞

f (τ)g(t−τ))dτ . (3.6)

If the functions f ,g are only defined on R≥0, then we can truncate the integration limits and we
define

f ∗g(t) =

∫ t

0
f (τ)g(t−τ))dτ . (3.7)

Please do not write f (t) ∗ g(t). If you wondering why, then try to find the differences between
f (t)∗g(t− t0), f (t− t0)∗g(t− t0), and f ∗g(t− t0).

Example 3.26 Let us visualise what exactly the convolution does. Let f be defined by its green
graph and let g be given by its dashed black graph in Figure 3.1. The solid black graph represents
the function t 7→ g(t− τ). In the top left subfigure, τ = −2.5, indicated by the dash-dotted vertical
line. Finally, the red graph represents f ∗ g. Notice that as the graph of g wanders from the left
to the right, it intersects with the graph of f , and the integral over their product becomes positive,
indicated by the green filling.

Figure 3.1: Visualisation of the convolution of f and g.

Exercise 3.27 Analyse the green and black graphs in Figure 3.1 and define the functions f ,g. Now
calculate f ∗g, the function corresponding to the red graph.

The convolution satisfies the following algebraic properties.
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3.3 The inverse Laplace transform

Exercise 3.28 Given functions f ,g,h : R→ R, show that the convolution satisfies

1. Commutativity: f ∗g = g∗ f ,
2. Associativity: ( f ∗g)∗h = f ∗ (g∗h) ,
3. Distributivity: f ∗ (g + h) = f ∗g + f ∗h .

Proposition 3.29 Let f ,g ∈ E. Then f ∗g ∈ E and its Laplace transform is equal to the multiplica-
tion of the Laplace transforms of f and g,

L{ f ∗g} = L fLg . (3.8)

Proof First of all we show that f ∗ g ∈ E. Since f and g are in E, there are constants α ∈ R and
C > 0 such that | f (t)|, |g(t)| ≤Ceαt for all t > 0. Hence,

| f ∗g(t)| ≤
∫ t

0
| f (t−τ)||g(τ)|dτ ≤C2

∫ t

0
eα(t−τ)eατ dτ = C2teαt ≤ Ĉeα̂t ,

for suitable α̂ > α and Ĉ > 0. The other two conditions are left as an exercise. We calculate the
Laplace transform by interchanging the integrals,

L{ f ∗g}(s) =

∫ ∞

0
e−st

(∫ t

0
f (τ)g(t−τ)dτ

)
dt =

∫ ∞

0
e−sτ f (τ)

(∫ ∞

τ
e−s(t−τ)g(t−τ)dt

)
dτ

=

∫ ∞

0
e−sτ f (τ)Lg(s)dτ = L f (s)Lg(s) ,

proving the proposition. �

Convolutions occur in many different branches of engineering, particularly when signals are being
processed. However, we will mainly be concerned with their application in the inverse Laplace
transform.

3.3 The inverse Laplace transform

The inverse Laplace transform is a path integral in the complex plane,

f (t) = L−1F(t) =
1

2πi
lim

T→∞

∫ c+iT

c−iT
estF(s)ds ,

for sufficiently large c (whatever that means). For our applications, however, we will not use this
formula, known as Mellin’s inverse formula, but we will concentrate on standard Laplace trans-
forms and read them backwards.
The underlying result is known as Lerch’s theorem, which states that the Laplace operator is inject-
ive. This means that if f and g are two different functions (different on a set of positive Lebesgue
measure) then their Laplace transforms differ. In other words, if F has an inverse Laplace transform,
then f = L−1F is uniquely determined.
In particular, this means we can reverse the Doetsch-symbol and write L f � f , meaning the
function L f has inverse Laplace transform f . For example, we can write

1
s2 � t , since we already know t �

1
s2 .

So if we start with an f ∈ E and then calculate L f , we can come back with L−1L f = f .
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3 Laplace Transformation

Example 3.30 Let L f (s) = 1
s(s2+1) be given. In this example, we want to find the function f . We

already know that

L(1)(s) =
1
s

and L(sin(t))(s) =
1

s2 + 1
, so we have L f (s) =

1
s

1
s2 + 1

= L(1)(s) ·L(sin(t))(s).

Applying Proposition 3.29, we get

L f (s) = L(1∗ sin(t))(s) .

Hence, we calculate

f (t) = L−1L(1∗ sin(t))(t) = 1∗ sin(t) =

∫ t

0
1 · sin(u)du = −cos(u)

∣∣∣t
0 = 1− cos(t) .

Proposition 3.31 Given the Laplace transform L f of f , then we have the following correspondence
of limits,

• limt↓0 f (t) = lims→∞ sL f (s),
• limt→∞ f (t) = lims↓0

(
sL f (s)

)
, if L f has no singularities in Rz ≥ 0 except at s = 0.

Exercise 3.32 Find a short proof of Proposition 3.31 under the additional assumption that f is
differentiable and f ′ ∈ E.
Hint: Use the derivative property (Lemma 3.15) and the fact that limRs→∞L f (s) = 0 for all f ∈ E.

Example 3.33 Let us find the limits of the function f as t→ 0 and t→∞ given its Laplace transform
L f (s) = 1

s2+4 .
Using Proposition 3.31 we directly get

lim
t→0

f (t) = lim
s→∞

sL f (s) = lim
s→∞

s
s2 + 4

= 0,

lim
t→∞

f (t) = lim
s→0

s
s2 + 4

= 0.

Explain the last equality in the first expression for s ∈ C.

3.4 Laplace transformation of periodic functions

For the next part we need an auxiliary result. We will learn about geometric series. The following
lemma is very useful.

Lemma 3.34 (Geometric series) The geometric series converges if |q| < 1 and takes the value

∞∑
n=0

qn =
1

1−q
.

Proof First we consider for N ∈ N the sum
∑N

n=0 qn and multiply it by 1−q to get

(1−q)
N∑

n=0

qn =

N∑
n=0

qn−

N+1∑
n=1

qn = 1 +

�
�
�
�N∑

n=1

qn −

�
�
�
�N∑

n=1

qn −qN+1 = 1−qN+1 .
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3.4 Laplace transformation of periodic functions

This type of sum is called a telescopic sum, since it is actually just an expansion of 1− qN+1 by
zeros (q−q) + (q2−q2) + . . .+ (qN−1−qN−1). So, solving for the sum we get

N∑
n=0

qn =
1−qN+1

1−q
.

Since |q| < 1 we have limn→∞ qn = 0 and thus,

∞∑
n=0

qn = lim
n→∞

N∑
n=0

qn = lim
n→∞

1−qN+1

1−q
=

1
1−q

,

proving the assertion. �

Exercise 3.35 Let |q| < 1 and calculate the value of
∑∞

n=0(−q)n, using a similar procedure as above
(you essentially have to change only one thing).

Theorem 3.36 (Laplace transform of periodic functions) Let f : R≥0 → R be periodic with
period P > 0. Then

L f (s) =
1

1− e−sP

∫ P

0
e−st f (t)dt . (3.9)

Proof First of all we write down the definition of the Laplace transform. Then we split the integral
into intervals of length P and use periodicity of f , more precisely, we use Remark 0.7 for n ∈ N.
We get

L f (s) =

∫ ∞

0
e−st f (t)dt =

∞∑
n=0

∫ (n+1)P

nP
e−st f (t)dt =

∞∑
n=0

∫ P

0
e−s(t+nP) f (t + nP)dt

=

∞∑
n=0

∫ P

0
e−ste−snP f (t)dt =

( ∞∑
n=0

e−snP
)(∫ P

0
e−st f (t)dt

)
.

Note that
∑∞

n=0 e−snP =
∑∞

n=0
(
e−sP)n is a geometric series and e−sP < 1. Using Lemma 3.34 we get∑∞

n=0 e−snP = 1
1−e−sP and thus, the assertion follows. (Neat, huh?) �

Example 3.37 Consider the square wave from Example 0.16

f (x) =

−1 if b2xc (mod 2) = 0 ,
1 else.

Since f is periodic with period 1 we get with help of Theorem 3.36

L f (s) =
1

1− e−s

∫ 1

0
e−st f (t)dt =

1
1− e−s

(∫ 1
2

0
e−st dt−

∫ 1

1
2

e−st dt
)

= −
1
s

1
(1− e−s)

(
e−st

∣∣∣∣ 1
2

0
− e−st

∣∣∣∣11
2

)
= −

1
s

1
(1− e−s)

(
e−

s
2 −1− e−s + e−

s
2
)

=
1−2e−

s
2 + e−s

s(1− e−s)
.

Exercise 3.38 We have now calculated the Laplace transform of the sine multiple times. Do it one
more time using Theorem 3.36.
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3 Laplace Transformation

3.5 Application of the Laplace transformation to ordinary differential equations

The Laplace transformation is used to solve homogeneous and non-homogeneous ordinary differ-
ential equations or systems of such equations. To understand the procedure, we consider a number
of examples.

Suppose we are given a linear differential equation of the form

x′(t) + ax(t) = ϑ(t)

subject to x(0) = x0 ,

where a, x0 ∈ R and ϑ : R→ C so that the Laplace transform exists, that is ϑ ∈ E. We saw that
Lx′(s) = sLx(s)− x(0). So we can apply the Laplace operator to both sides of the differential
equation, solve the equation, and then transform back. In more detail, we proceed as follows.

1. Apply the Laplace operator to both sides of the differential equation. Using linearity of the
Laplace operator and then Lemma 3.15, we can write

Lϑ(s) = L{x′+ ax}(s) = L{x′}(s) + aLx(s) = sLx(s)− x(0) + aLx(s) = (s + a)Lx(s)− x0 .

2. So we can solve for Lx(s) and get

Lx(s) =
Lϑ(s) + x0

s + a
.

3. Finally, we can find the inverse Laplace transform x(t) = L−1{Lx}(t), usually with help of Pro-
position 3.29.

Example 3.39 We are interested in the solution of the following ordinary differential equation

x′(t) + 2x(t) = 2t−4 ,

subject to x(0) = 1 .

Following the steps from above, we get

1. Firstly, we apply the Laplace operator to the both parts of the equation and use its linearity. This
together with Exercise 3.5 leads to

L{x′+ 2x} = L(2t−4) ⇐⇒ L{x′}+ 2Lx = 2L(t)−4L(1) ⇐⇒ sLx(s)− x(0) + 2Lx(s) =
2
s2 −

4
s
.

2. We solve for Lx and obtain

(s + 2)Lx(s)−1 =
2
s2 −

4
s
⇐⇒ Lx(s) =

2
s2(s + 2)

−
4

s(s + 2)
+

1
s + 2

.

3. Finally, we can use Exercise 3.5, Proposition 3.12 and Proposition 3.29 to find the inverse
Laplace transform as

x(t) = 2L−1
(

1
s2(s + 2)

)
−4L−1

(
1

s(s + 2)

)
+L−1

(
1

s + 2

)
= 2(t ∗ e−2t)(t)−4(1∗ e−2t)(t) + e−2t = 2

∫ t

0
(t−τ)e−2τdτ−4

∫ t

0
1 · e−2τdτ+ e−2t

= t +
e−2t −1

2
+ 2(e−2t −1) + e−2t = t +

7e−2t −5
2

.
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3.5 Application of the Laplace transformation to ordinary differential equations

We can even solve differential equations of higher order using a similar procedure. In this section,
we derive the general result with help of general derivative property in Proposition 3.18.

Theorem 3.40 For n ∈ N, two sets of constants {ak}
n
k=0 ⊂ R and {ck}

n−1
k=0 ⊂ R, and a function ϑ :

R→ C, ϑ ∈ E with Laplace transform Lϑ, a solution to the (non-)homogeneous linear differential
equation of order n

n∑
k=0

akx(k) = ϑ(t),

subject to x(k)(0) = ck, for all k ∈ {0, . . . ,n−1}

is for t ≥ 0 given by

x(t) = L−1
(Lϑ(s) +

∑n
k=1

∑k
j=1 aksk− jc j−1∑n

k=0 aksk

)
(t) .

Proof In analogy to the procedure outlined above, we follow three steps.

Firstly, we apply the Laplace operator L to both sides of the differential equation, then use linearity
and Proposition 3.18 to get

L{ϑ}(s) = L
{∑n

k=0akx(k)
}
(s) = a0Lx(s) +

n∑
k=1

akL{x(k)}(s)

= a0Lx(s) +
∑n

k=1ak
(
skLx(s)−

∑k
j=1sk− jx( j−1)(0)

)
=

∑n
k=0akskLx(s)−

∑n
k=1

∑k
j=1aksk− jc j−1 .

Secondly, we can solve this equation for L f and get

Lx(s) =
Lϑ(s) +

∑n
k=1

∑k
j=1aksk− jc j−1∑n

k=0aksk . (3.10)

Finally, the theorem follows by applying the inverse Laplace operator to both sides. �

Notice, if x(k)(0) = 0, for all k ∈ {0, . . . ,n−1}, then Equation (3.10) takes the form

Lx(s) =
Lϑ(s)∑n
k=0aksk .

In Example 3.39, we needed to calculated the inverse Laplace transform of products like 1
s

1
(s+c) ,

just as Theorem 3.40 suggests. In this case, we made use of Proposition 3.29 and calculated the
appropriate convolutions in step 3. In Example 3.42, we will see another trick that can be used.

For this, recall the partial fraction decomposition (Partialbruchzerlegung) of rational functions,
that is, fractions such that their numerators and denominators are polynomials. It is somewhat the
inverse procedure of finding a common denominator when adding multiple fractions. In general,
we have to following result.

Lemma 3.41 (Partialbruchzerlegung über R) For any rational function R : X ⊂ R→ R with m
different real poles xk of order pk and n different (up to complex conjugation) complex poles zk of
order qk can be uniquely represented as

R(x) = P(x) +

m∑
k=1

pk∑
`=1

ak`

(x− xk)`
+

n∑
k=1

qk∑
`=1

bk`x + ck`

(x− zk)`(x− z̄k)`
,

where P is a polynomial and all ak`,bk`,ck` ∈ R.
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3 Laplace Transformation

Consider the following example.

Example 3.42 We want to find a solution to the following differential equation,

x′′(t) + 5x′(t) + 4x(t) = 10 ,

subject to x′(0) = x(0) = 0 .

We use Theorem 3.40 and note that x′(0) = x(0) = 0, so that we get the form

Lx(s) =
10L(1)

4 + 5s + s2 =
10

s(4 + 5s + s2)
=

10
s(s + 1)(s + 4)

. (3.11)

We do not know the inverse Laplace transform of this form. But we notice that this is a rational
function with three poles of order 1. So with Lemma 3.41 we know that it can be decomposed into
a sum of fractions of the form,

10
s(s + 1)(s + 4)

=
A
s

+
B

s + 1
+

C
s + 4

, (3.12)

where the constants A,B, and C have to be determined by coefficient comparison. Hence, multiply-
ing both sides by s(s + 1)(s + 4) we get

10 = A(s + 1)(s + 4) + Bs(s + 4) +Cs(s + 1) = (A + B+C)s2 + (5A + 4B+C)s + 4A ,

which leads us to

A + B+C = 0, 5A + 4B+C = 0, and 4A = 10.

From there we find A = 10
4 ,B = − 10

3 ,C = 10
12 , and therefore,

Lx(s) = 10
( 1
4s
−

1
3(s + 1)

+
1

12(s + 4)

)
.

But this form is familiar, since we know that 1 � s−1. Using the contraction property in Proposi-
tion 3.12 we get

x(t) = 10
( 1

4
−

1
3

e−t +
1
12

e−4t
)
.

So instead of working with the convolution to help us find the inverse Laplace transformation, we
decomposed the fraction into a sum of ‘simpler’ fractions and used linearity of L−1.

Let us consider an example, where the rational function has only complex roots.

Example 3.43 Consider the following differential equation with initial conditions x′(0) = x(0) = 0,

2x′′(t) + 4x(t) = cos(3t) .

Applying Theorem 3.40 we find that

Lx(s) =
L(cos(3t))(s)

4 + 2s2 =
s

s2 + 9
·

1
4 + 2s2 .

Of course we know that L−1( s
s2+9 )(t) = cos(3t) and we see that 1

4+2s2 has some correspondence with
the sine (indeed, using the time scaling property in Proposition 3.8 we find (2

√
2)−1 sin(

√
2t) �

(2s2 + 4)−1)). We have now two possibilities to continue. We could calculate the convolution of
the two as Proposition 3.29 suggests. However, this seems tedious. So let us decompose this
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3.5 Application of the Laplace transformation to ordinary differential equations

fraction into a sum of fractions. We notice, that both s2 + 9 and 4 + 2s2 have no real roots, since
s2 + 9 = (s−3i)(s + 3i) and 2s2 + 4 = 2(s− i

√
2)(s + i

√
2). So by Lemma 3.41, we know that it can

be expressed as

s
(s2 + 9)(4 + 2s2)

=
A + Bs
s2 + 9

+
C + Ds
2s2 + 4

.

Now we can proceed as in Example 3.42, and we will find A = 0, B = − 1
14 , C = 0, and D = 1

7 , so
that

s
(s2 + 9)(4 + 2s2)

=
1

14

(
s

s2 + 2
−

s
s2 + 9

)
.

But we know the inverse Laplace of the individual terms (with Exercise 3.5), so that by linearity,
we find our solution

x(t) =
1
14

(
cos(
√

2t)− cos(3t)
)
,

and we are done! This procedure is usually faster than using convolutions. However, we have to
remember which form the partial fraction decomposition takes, so that we actually can decompose
it by just comparing coefficients.

A note to keep in mind: if we allow roots in C, the numerators will always be constants. In this
case, we would decompose as

s
2(s2 + 9)(2 + s2)

=
1
2

(
A

s−3i
+

B
s + 3i

+
C

s−
√

2i
+

D

s +
√

2i

)
.

Comparing coefficients, we would get A = B = − 1
14 and C = D = 1

14 . Plugging in and taking the
inverse Laplace transform we would get

x(t) =
1
2

1
14

(
ei
√

2t + e−i
√

2t − ei3t − ei3t
)

=
1
14

(
cos(
√

2t)− cos(3t)
)
,

as already expected.

It is, in a sense, a trade-off. The coefficient comparison in the complex case may take longer by hand
than the one in the real case. However, you can be certain that the numerators are constants and
that you use the correct form. Additionally, it is arguably easier to remember the correspondence
eat � 1

s−a than cos(at) � s
s2+a2 and sin(at) � a

s2+a2 .

Let us conclude this section with two exercises.

Exercise 3.44 Using the steps described above, find a solution to the following first-order linear
differential equation,

x′(t) + x(t) = et , subject to x(0) = e1 = e .

You should get x(t) = 1
2 (et − e−t + 2e1−t).

Exercise 3.45 Argue that the ‘Laplace-procedure’ is not a great help in solving the following first-
order nonlinear differential equation,

x′(t) + (x(t))2 = 0 , subject to x(0) = 1 .

Can you find a solution anyway? Maybe x(t) = 1
1+t will do? But how to derive that, mh?
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