Solution 1

1. See the section 1.2 in [PR].

(a) 3. Ordnung; nicht linear, quasilinear.

(b) 1. Ordnung; nicht linear.

(c) 2. Ordnung; linear.

(d) 2. Ordnung; linear.

(e) 2. Ordnung; linear.

2. **(a)**

$$u_x = \alpha e^{\alpha x + \beta y}, u_y = \beta e^{\alpha x + \beta y},$$

we substitute u, u_x, u_y into the equation to get

$$(\alpha + 3\beta + 1)e^{\alpha x + \beta y} = 0,$$

so for any constants α, β satisfying the relation $\alpha + 3\beta + 1 = 0$, $u(x, y) = e^{\alpha x + \beta y}$ solves the equation.

(b)

$$u_{xx} = \alpha^2 e^{\alpha x + \beta y}, u_{yy} = \beta^2 e^{\alpha x + \beta y},$$

substituting into the equation, we get

$$(\alpha^2 + \beta^2)e^{\alpha x + \beta y} = 5e^{x - 2y}.$$

Hence $\alpha = 1, \beta = -2, u(x, y) = e^{x-2y}$ is the only solution of the form $u(x, y) = e^{\alpha x + \beta y}$.

(c)

$$u_{xxxx} = \alpha^4 e^{\alpha x + \beta y}, u_{yyyy} = \beta^4 e^{\alpha x + \beta y}, u_{xxyy} = \alpha^2 \beta^2 e^{\alpha x + \beta y},$$

substituting into the equation, we get

$$(\alpha^4 + \beta^4 + 2\alpha^2\beta^2)e^{\alpha x + \beta y} = 0.$$

Hence $\alpha = \beta = 0$, $u(x, y) = e^0 = 1$ is the only solution of the form $u(x, y) = e^{\alpha x + \beta y}$.

3. (a) Integrate $u_y = 2x$ for y,

$$u = 2xy + c(x).$$

Substitute into $u_x = 2(x + y)$,

$$2y + c'(x) = 2(x + y),$$

so c'(x) = 2x. Integrate for x,

$$c(x) = x^2 + c_1, \quad c_1 \in \mathbb{R}.$$

 $u = 2xy + x^2 + c_1$ solves the equation. u(0,0) = 0 implies $c_1 = 0$.

(b) Any solution of the system is smooth, since 2(x + y) and Ax are smooth functions. So any solution satisfies $u_{xy} = u_{yx}$, contradicting

$$u_{xy} = \frac{\partial}{\partial y}(2(x+y)) = 2 \neq A = \frac{\partial}{\partial x}(Ax) = u_{yx}.$$

4. A particle starting its life at a boundary point dies at once. Thus

$$u(x, y, z) = 0, \quad (x, y, z) \in \partial D.$$

Consider an internal point (x, y, z), by the similar derivation in the book, we get the difference equation

$$u(x,y,z) = \delta t + \frac{1}{6} \left[u(x-\delta h,y,z) + u(x+\delta h,y,z) + u(x,y-\delta h,z) + u(x,y+\delta h,z) + u(x,y,z-\delta h) + u(x,y,z+\delta h) \right]$$

We expand all functions on the right hand side into a Taylor series, assuming $u \in C^4$,

$$u(x - \delta h, y, z) = u(x, y, z) - u_x(x, y, z) \cdot \delta h + \frac{1}{2} u_{xx}(x, y, z) (\delta h)^2 + O((\delta h)^3),$$

$$u(x + \delta h, y, z) = u(x, y, z) + u_x(x, y, z) \cdot \delta h + \frac{1}{2} u_{xx}(x, y, z) (\delta h)^2 + O((\delta h)^3),$$

etc.

Dividing by δt and taking the limit, we obtain

$$\Delta u = -\frac{1}{k}, \quad (x, y, z) \in D.$$

References

[PR] Y. Pinchover, J. Rubinstein, An introduction to Partial Differential Equations, Cambridge University Press(12. Mai 2005).