Solution 11

1. From equation (7.9) on page 176 of [PR], let $D = [0, \pi] \times [0, \pi]$, $\Gamma = \partial D$,

$$0 = \int_{\Gamma} \partial_n u$$

$$= \int_0^{\pi} u_y(x, \pi) dx + \int_0^{\pi} u_x(\pi, y) dy$$

$$- \int_0^{\pi} u_y(x, 0) dx - \int_0^{\pi} u_x(0, y) dy$$

$$= \int_0^{\pi} (x^2 - a) dx$$

$$= \frac{x^3}{3} \Big|_0^{\pi} - a\pi$$

$$= \frac{\pi^3}{3} - a\pi$$

$$\Rightarrow a = \frac{\pi^2}{3}.$$

2. a) Substitute ω and we obtain

$$X''(x)Y(y) + X(x)Y''(y) = 0 \Rightarrow \frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = -\lambda$$
$$X'(0)Y(y) = X'(2\pi)Y(y) = 0$$

which implies the following eigenvalue problem

$$X''(x) + \lambda X(x) = 0$$
 $0 < x < 2\pi$,
 $Y''(y) - \lambda Y(y) = 0$ $-1 < y < 1$

From the boundary condition, we get

$$X'(0) = X'(2\pi) = 0,$$

hence the solutions for the eigenvalue problem of s are

$$\lambda_n = (\frac{n}{2})^2, \quad n = 0, 1, 2, 3...$$

and the corresponding eigenfunctions are

$$X_n(x) = \cos\frac{nx}{2}.$$

Then we can solve the equation for Y, the general solution is (see equation (7.43) in [PR])

$$Y_0(y) = \alpha_0 y + \beta_0, \quad n = 0,$$

 $Y_n(y) = \alpha_n \sinh \frac{n(y+1)}{2} + \beta_n \sinh \frac{n(y-1)}{2}, \quad n = 1, 2, 3...$

so

$$w_0(x, y) = \alpha_0 y + \beta_0$$

 $\omega_n(x, y) = \cos \frac{nx}{2} \left(\alpha_n \sinh \frac{n(y+1)}{2} + \beta_n \sinh \frac{n(y-1)}{2} \right), \ n = 1, 2, 3...$

b) By the superposition principle, we can write u in the expansion of w_n

$$u(x,y) = \alpha_0 y + \beta_0 + \sum_{n=1}^{\infty} \cos \frac{nx}{2} \left(\alpha_n \sinh \frac{n(y+1)}{2} + \beta_n \sinh \frac{n(y-1)}{2} \right)$$

The boundary conditions implies

$$u(x,-1) = -\alpha_0 + \beta_0 + \sum_{n=1}^{\infty} \beta_n \cos \frac{nx}{2} \sinh(-n) = 0$$
$$u(x,1) = \alpha_0 + \beta_0 + \sum_{n=1}^{\infty} \alpha_n \cos \frac{nx}{2} \sinh n = 1 + \cos 2x$$

hence we get the values of α_n, β_n

$$\alpha_0 = \beta_0 = \frac{1}{2},$$
 $\alpha_4 = \frac{1}{\sinh 4}, \quad \alpha_n = 0, \, n \neq 0, 4,$
 $\beta_n = 0, \, n \neq 0.$

So the solution is

$$u(x,y) = \frac{y}{2} + \frac{1}{2} + \frac{1}{\sinh 4} \cos 2x \sinh 2(y+1)$$

3. For v_1 , we have the Newmann boundary condition

$$(v_1)_x(0,y) = a(x^2 - y^2)_x = 2ax = 0,$$

$$(v_1)_x(\pi, y) = \sin y + a(x^2 - y^2)_x = \sin y + 2\pi a, \quad y \in [0, \pi],$$

$$(v_1)_y(x, 0) = 0, \quad (v_1)_y(x, \pi) = 0, \quad x \in [0, \pi]$$

In order to guarantee the Newmann problem is solvable for v_1 , the following must hold

$$0 = \int_0^{\pi} (v_1)_y(x, \pi) dx + \int_0^{\pi} (v_1)_x(\pi, y) dy$$

$$- \int_0^{\pi} (v_1)_y(x, 0) dx - \int_0^{\pi} (v_1)_x(0, y) dy$$

$$= \int_0^{\pi} (\sin y + 2\pi a) dy$$

$$= -\cos y|_0^{\pi} + 2\pi^2 a$$

$$= 2 + 2\pi^2 a$$

$$\Rightarrow a = -\frac{1}{\pi^2}$$

For v_2 , we have the Newmann boundary condition

$$(v_2)_x(0,y) = 0, (v_2)_x(\pi,y) = 0, y \in [0,\pi],$$

$$(v_2)_y(x,0) = a(x^2 - y^2)_y = 0,$$

$$(v_2)_y(x,\pi) = -\sin x + a(x^2 - y^2)_y = -\sin x - 2\pi a, x \in [0,\pi].$$

To guarantee the Newmann problem is solvable for v_1 , the following must hold

$$0 = \int_0^{\pi} (v_2)_y(x, \pi) dx + \int_0^{\pi} (v_2)_x(\pi, y) dy$$

$$- \int_0^{\pi} (v_2)_y(x, 0) dx - \int_0^{\pi} (v_2)_x(0, y) dy$$

$$= \int_0^{\pi} (-\sin x - 2\pi a) dx$$

$$= \cos y \Big|_0^{\pi} - 2\pi^2 a$$

$$= -2 - 2\pi^2 a$$

$$\Rightarrow a = -\frac{1}{\pi^2}$$

Hence $a = -\frac{1}{\pi^2}$.

References

[PR] Y. Pinchover, J. Rubinstein, An introduction to Partial Differential Equations, Cambridge University Press(12. Mai 2005).