Solution 8

1. The related eigenvalue problem is

$$\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} + \lambda v = 0 \qquad 0 \leqslant x \leqslant \frac{\pi}{2},$$

$$\frac{\mathrm{d}v}{\mathrm{d}x}(0) = \frac{\mathrm{d}v}{\mathrm{d}x}(\frac{\pi}{2}) = 0.$$

The eigenvalues are given by $\lambda_n = (2n)^2$, n = 0, 1, 2... and the corresponding eigenfunctions are $v_n = \cos 2nx$. We have the eigenfunction expansion of u

$$u(x,t) = \sum_{n=0}^{\infty} T_n(t) \cos 2nx.$$

From the initial condition, we get

$$T_0(0) = 1$$
, $T_2(0) = 3$, $T_n(0) = 0 \ \forall n \neq 0, 2$.

Substituting to the equation, we get

$$\sum_{n=0}^{\infty} \left(\frac{\mathrm{d}T_n}{\mathrm{d}t} + (2n)^2 T_n \right) \cos 2nx = 2t + 15 \cos 2x.$$

Then we get the equations for $T_n(t)$

$$n = 0$$

$$\frac{dT_0}{dt} = 2t, \quad T_0(0) = 1 \Rightarrow T_0(t) = 1 + t^2,$$

$$n = 1$$

$$\frac{dT_1}{dt} + 4T_1 = 15, \quad T_1(0) = 0 \Rightarrow T_1(t) = \frac{15}{4} - \frac{15}{4}e^{-4t},$$

$$n = 2$$

$$\frac{dT_2}{dt} + 16T_2 = 0, \quad T_2(0) = 3 \Rightarrow T_2(t) = 3e^{-16t},$$

 $n \neq 0, 1, 2$

$$\frac{dT_n}{dt} + (2n)^2 T_n = 0, \quad T_n(0) = 0 \Rightarrow T_n(t) = 0.$$

Hence we get the solution of the problem

$$u(x,t) = 1 + t^2 + \left(\frac{15}{4} - \frac{15}{4}e^{-4t}\right)\cos 2x + 3e^{-16t}\cos 4x.$$

2. We take the auxiliary function $w(x,t) = x \sin t$ and set v(x,t) = u(x,t) - w(x,t), then v(x,t) solves the following problem

$$v_t - v_{xx} = 1$$
 $0 < x < 1, t > 0,$
 $v_x(0,t) = v_x(1,t) = 0$ $t \ge 0,$
 $v(x,0) = 1 + \cos(2\pi x)$ $0 \le x \le 1.$

The related eigenvalue problem is

$$\frac{d^2v}{dx^2} + \lambda v = 0 \qquad 0 \le x \le 1,$$

$$\frac{dv}{dx}(0) = \frac{dv}{dx}(1) = 0.$$

The eigenvalues are $\lambda_n = (n\pi)^2$, n = 0, 1, 2... and the corresponding eigenfunctions are $v_n = \cos n\pi x$.

v has the following eigenfunction expansion

$$v(x,t) = \sum_{n=0}^{\infty} T_n(t) \cos n\pi x.$$

The initial conditions imply that

$$T_0(0) = 1$$
, $T_2(0) = 1$, $T_n(0) = 0 \ \forall n \neq 0, 2$.

Substituting to the equation, we get

$$\sum_{n=0}^{\infty} \left(\frac{\mathrm{d}T_n}{\mathrm{d}t} + (n\pi)^2 T_n \right) \cos n\pi x = 1.$$

Then we get the equations for $T_n(t)$

$$n = 0$$

$$\frac{dT_0}{dt} = 1$$
, $T_0(0) = 1 \Rightarrow T_0(t) = 1 + t$.

$$n=2$$

$$\frac{\mathrm{d}T_2}{\mathrm{d}t} + (2\pi)^2 T_2 = 0, \quad T_2(0) = 1 \Rightarrow T_2(t) = e^{-4\pi^2 t}.$$

 $n \neq 0, 2$

$$\frac{\mathrm{d}T_n}{\mathrm{d}t} + (n\pi)^2 T_n = 0, \quad T_n(0) = 0 \Rightarrow T_n(t) = 0.$$

Hence we get v(x, t)

$$v(x,t) = 1 + t + e^{-4\pi^2 t} \cos 2\pi x$$

and the solution u(x, t) of the original problem

$$u(x,t) = v(x,t) + w(x,t) = 1 + t + e^{-4\pi^2 t} \cos 2\pi x + x \sin t.$$

3. The eigenvalue problem

$$\frac{\mathrm{d}v}{\mathrm{d}x} + \lambda v = 0 \qquad 0 < x < \pi$$

$$v(0) = v(\pi) = 0$$

have eigenvalues $\lambda_n = n^2$, n = 1, 2, 3... and the corresponding eigenfunctions $\lambda_n = \sin nx$. The eigenfunction expansion of u(x, t) is

$$u(x,t) = \sum_{n=1}^{\infty} T_n(t) \sin nx.$$

The initial condition implies

$$T_2(0) = 1$$
, $T_n(0) = 0 \ \forall n \neq 2$

Substituting to the equation, we have

$$\sum_{n=1}^{\infty} \left(\frac{\mathrm{d}T_n}{\mathrm{d}t} + (n^2 + 4)T_n \right) \sin nx = 0.$$

We get the equations for T_n :

$$n=2$$

$$\frac{dT_2}{dt} + (2^2 + 4)T_2 = 0, \quad T_2(0) = 1 \Rightarrow T_2(t) = e^{-8t},$$

 $n \neq 2$

$$\frac{dT_n}{dt} + (n^2 + 4)T_n = 0, \quad T_n(0) = 0 \Rightarrow T_n(t) = 0.$$

Hence $u(x, t) = e^{-8t} \sin 2x$ is the solution of the problem.

4. We take the auxiliary function $w(x,t) = \sin \frac{x}{2}$ and set v(x,t) = u(x,t) - w(x,t). Then v(x,t) satisfies the following equation with homogeneous Dirichlet boundary conditions

$$v_t - v_{xx} + 4v = 0$$
 $0 < x < \pi, \quad t > 0,$
 $v(0,t) = 0, v(\pi,t) = 0$ $t \ge 0,$
 $v(x,0) = \sin 2x$ $0 \le x \le \pi.$

From the solution of ex3, we know $v(x,t) = e^{-8t} \sin 2x$ is the solution of the above problem. Hence $u(x,t) = e^{-8t} \sin 2x + \sin \frac{x}{2}$ is the solution of the original problem.

References

[PR] Y. Pinchover, J. Rubinstein, An introduction to Partial Differential Equations, Cambridge University Press(12. Mai 2005).