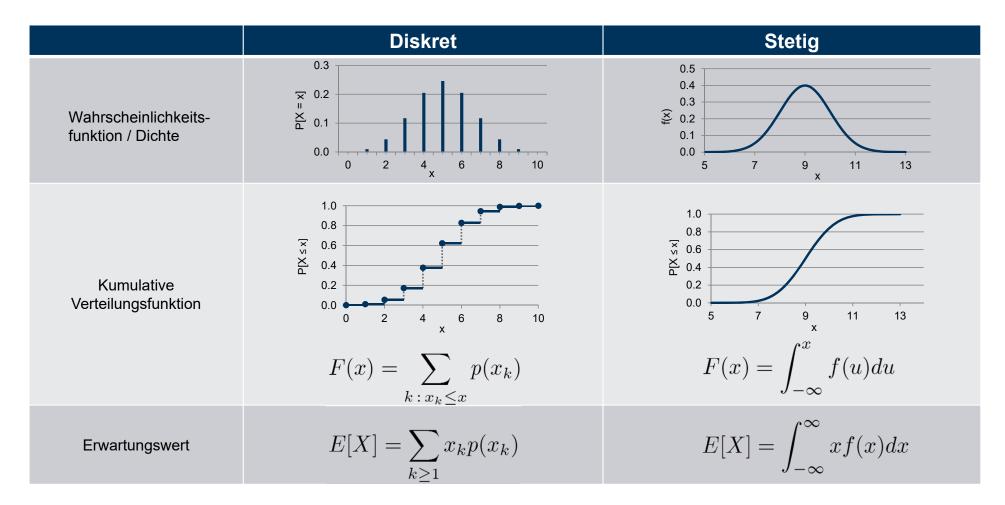


Stetige Verteilungen

Vergleich der Konzepte (diskret vs. stetig)



1

Uniforme Verteilung (Gleichverteilung): $X \sim Uni(a,b)$

• Wertebereich
$$W = [a, b]$$

• Dichte
$$f(x) = \frac{1}{b-a}, x \in [a,b]$$

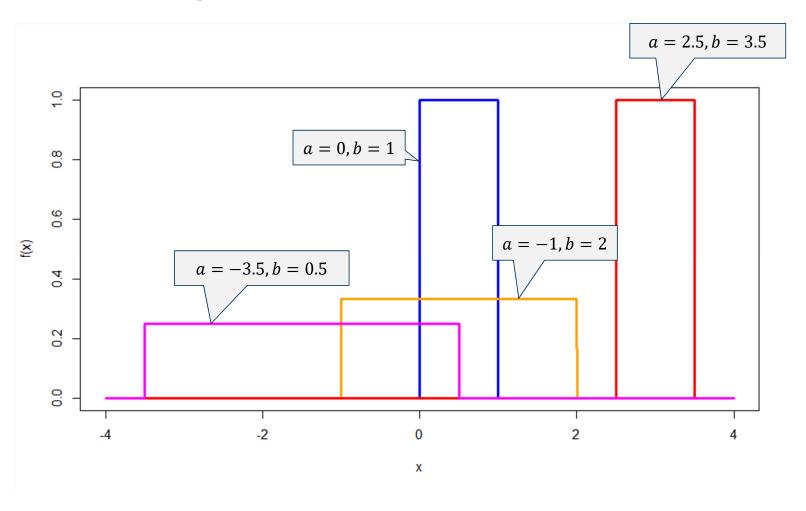
• Verteilungsfunktion
$$F(x) = \frac{x-a}{b-a}, x \in [a,b]$$

• Erwartungswert
$$E[X] = \frac{a+b}{2}$$

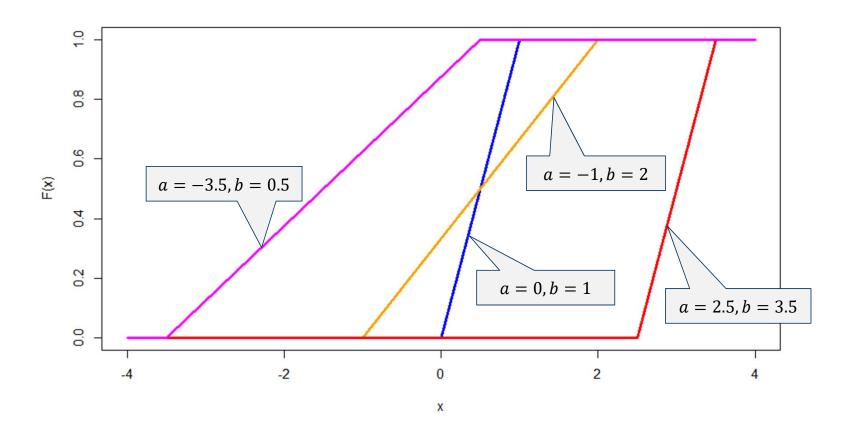
• Varianz
$$Var(X) = \frac{(b-a)^2}{12}$$

 Anwendung: Stetige Version des Laplace-Modells, "völlige Ignoranz", bevorzugt keine Regionen in [a,b], benutzt für Rundungsfehler

Uniforme Verteilung: Illustration Dichten



Uniforme Verteilung: Illustration kumulative Verteilungsfunktion



Exponentialverteilung: $X \sim Exp(\lambda), \lambda > 0$

• Wertebereich:
$$W = [0, \infty)$$

• Dichte
$$f(x) = \lambda e^{-\lambda x}, x \ge 0$$
 und $f(x) = 0, x < 0$

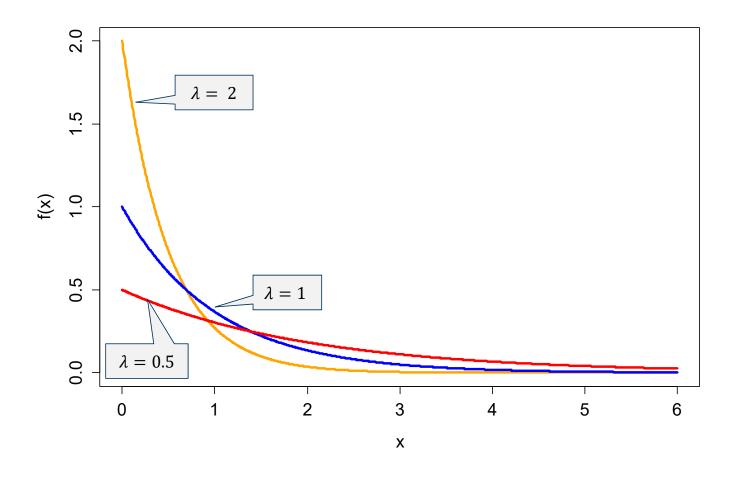
• Verteilungsfunktion
$$F(x) = 1 - e^{-\lambda x}, x \ge 0$$
 und $F(x) = 0, x < 0$

• Erwartungswert
$$E[X] = \frac{1}{\lambda}$$

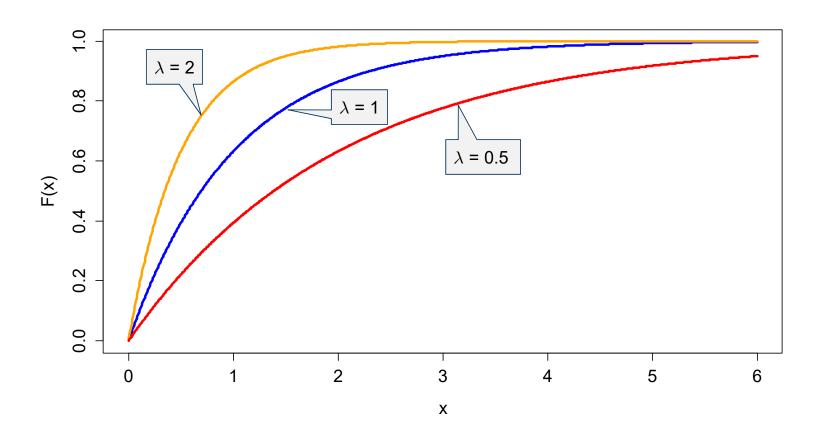
• Varianz $Var(X) = \frac{1}{\lambda^2}$

- Anwendung: Einfachstes Modell für Wartezeiten oder Lebenszeit technischer Systeme
 (ohne Alterungserscheinungen), stetige Version der geometrischen Verteilung.
- Bemerkung: Wenn Wartezeiten $Exp(\lambda)$ yerteilt sind, dann hat die Anzahl der Ereignisse in einem Intervall der Länge t eine $Pois(\lambda t)$ -Verteilung.

Exponentialverteilung: Illustration Dichten



Exponentialverteilung: Illustration kum. Verteilungsfunktion



7

Normalverteilung (Gaussverteilung): $X \sim N(\mu, \sigma^2)$

$$W = (-\infty, \infty)$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$$

• Verteilungsfunktion
$$F(x) = \int_{-\infty}^{x} f(u)du = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

(kann man nicht geschlossen hinschreiben)

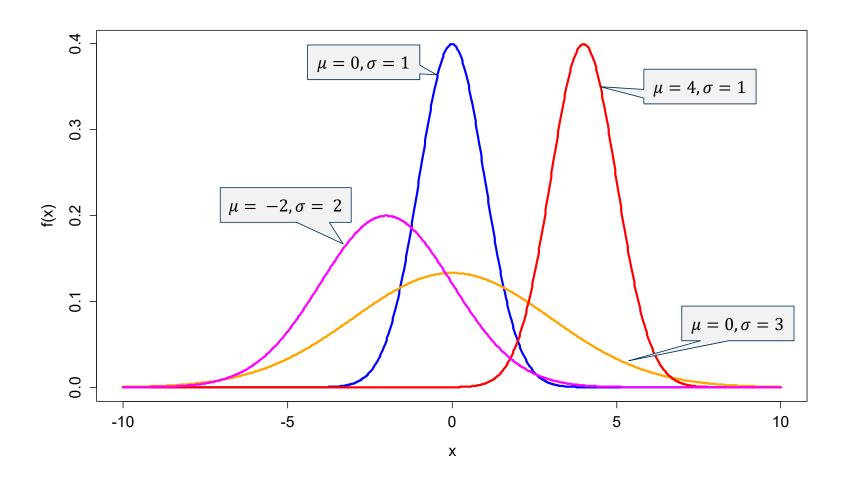
$$E[X] = \mu$$

$$Var(X) = \sigma^2$$

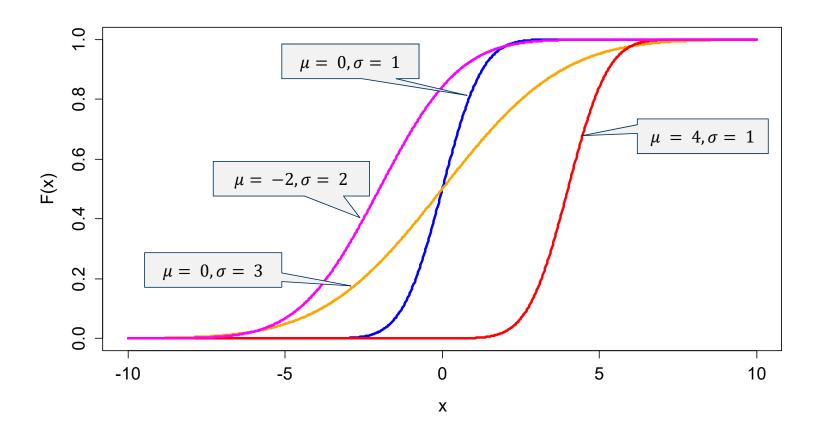
Anwendung

Häufigste Verteilung für Messwerte, entsteht als Summe von vielen unabhängigen und gleichartigen Grössen (zentraler Grenzwertsatz)

Normalverteilung: Illustration Dichten



Normalverteilung: Illustration kumulative Verteilungsfunktion



Normalverteilung, Schnellquiz

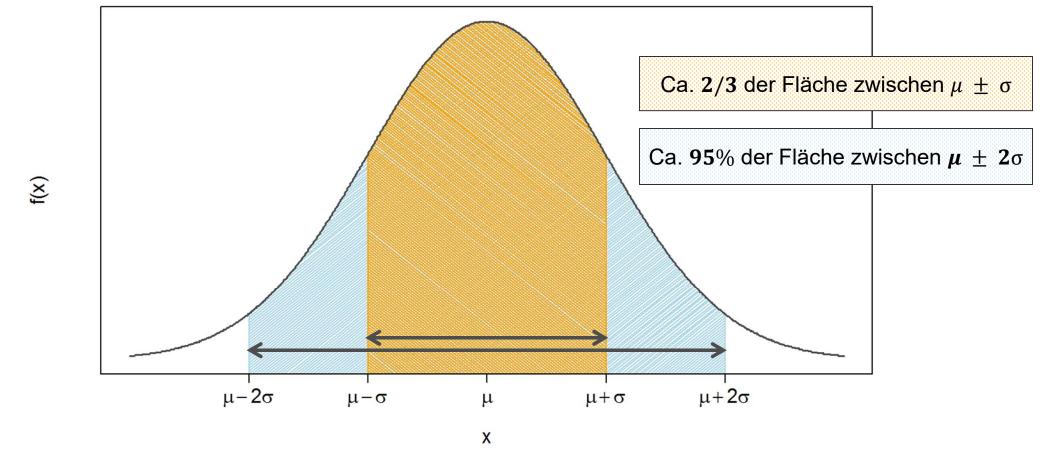
Es sei $X \sim N(\mu, \sigma^2)$ mit $\mu = 2$ und $\sigma^2 = 9$.

Betrachte die Aussagen

- a) Es ist $P[X > 5] = 1 P[X \le 5]$.
- b) Es ist $P[X \ge 3] = P[X \le 1]$.

Es ist

- 1. (a) Richtig / (b) Richtig
- (a) Falsch / (b) Richtig
 (a) Richtig / (b) Falsch
- 4. (a) Falsch / (b) Falsch
- 5. Keine Ahnung



Normalverteilung: Standardnormalverteilung

- Man spricht von der **Standardnormalverteilung**, falls $\mu = 0$ und $\sigma^2 = 1$.
- Die Dichte der Standardnormalverteilung bezeichnet man mit $\varphi(x)$.
- Die kumulative Verteilungsfunktion der Standardnormalverteilung bezeichnet man mit $\Phi(x)$ Diese ist **nicht** geschlossen darstellbar (keine Formel).
 - → **Tabelle** (siehe Beispiel)