
NumCSE

Autumn Semester 2017

Prof. Rima Alaifari

Exercise sheet 9

Function Approximation

P. Bansal

Problem 9.1: Adaptive polynomial interpolation

For approximating a given function by a polynomial interpolant upto a desired tolerance, position

of the interpolation nodes is crucial. Here, we look at an a posteriori adaptive strategy that em-

ploys a greedy algorithm to build the set of interpolation nodes based on intermediate interpolants.

Templates: adapPolyIpol.cpp, newtonIpol.hpp

The greedy algorithm for adaptive polynomial interpolation is described below:

Given a function f : [a, b] 7→ R, start with an initial node set T0 := {1
2(b + a)}. Based on a

fixed finite set S ⊂ [a, b] of sampling points, augment the set of nodes as

Tn+1 = Tn ∪
{

argmax
t∈S

| f (t)− ITn
(t)|

}

, (9.1)

where ITn
is the polynomial interpolation operator for the node set Tn, until

max
t∈S

| f (t)− ITn(t)| ≤ tol · max
t∈S

| f (t)| . (9.2)

First, we need a function which computes the interpolating polynomial for a given set of nodes.

(a) Implement a C++ function

VectorXd divDiff(const VectorXd& t, const VectorXd& y);

which computes the coefficients of the polynomial interpolant using divided differences, refer tablet

notes. Here, t and y are the interpolation nodes and the corresponding function values.

(b) Implement a C++ function

template <c lass Function>

VectorXd adapPolyIpol(const Function& f, double a, double b,

double tol, i n t N,

Eigen::VectorXd& adaptive_nodes);

that implements the algorithm described above. The arguments are: the function handle f, the interval

bounds a, b, the relative tolerance tol, the number N of equidistant sampling points to compute the

error:

S :=

{

a + (b − a)
j

N
, j = 0, . . . , N

}

.

and the final set of interpolation nodes returned in adaptive_nodes. For each intermediate set Tn,

adapPolyIpol should compute the error:

ǫn := max
t∈S

| f (t)− TTn
(t)| (9.3)

and return these error values in a vector.

Remark: Use a suitable lambda function for the type Function and use the function intPolyEval

defined in newtonIpol.hpp to evaluate the polynomial interpolant.

(c) For f1(t) := sin(e2t) and f2(t) =
√

t
1+16t2 plot ǫn versus n, the number of interpolation nodes, in the

interval [a, b] = [0, 1] using N=1000 sampling points and tol = 1e-6.

1

Problem 9.2: Chebyshev polynomials and their properties

In this problem, we will examine Chebyshev polynomials and a few of their many properties.

Templates: bestApproxCheb.cpp

Let Tn ∈ Pn be the n-th Chebyshev polynomial and ξ
(n)
0 , . . . , ξ

(n)
n−1 be the n zeros of Tn, where

ξ
(n)
j = cos

(

2j + 1

2n
π

)

, j = 0, . . . , n − 1. (9.4)

Define a family of discrete L2 semi-inner products (i.e. not conjugate symmetric):

(f , g)n :=
n−1

∑
j=0

f (ξ
(n)
j)g(ξ

(n)
j), f , g ∈ C0([−1, 1]) (9.5)

Also define a special weighted L2 semi-inner product:

(f , g)w :=
∫ 1

−1

1√
1 − t2

f (t)g(t) dt f , g ∈ C0([−1, 1]) (9.6)

(a) Show that the Chebyshev polynomials are orthogonal w.r.t. the semi-inner product defined in

Eq. (9.6), i.e. (Tk, Tl)w = 0 for every k 6= l.

Hint: Use the trigonometric identity 2 cos(x) cos(y) = cos(x + y) + cos(x − y).

Consider the following statement:

Theorem 9.7.

The family of polynomials {T0, . . . , Tn} is an orthogonal basis of Pn with respect to the inner product

(·, ·)n+1 defined in Eq. (9.5).

(b) Prove Thm. 9.7. Hint: Use the relationship of trigonometric functions and the complex exponential.

(c) Implement a C++ code to numerically test the assertion of Thm. 9.7.

Use the following code for evaluating Chebyshev polynomials based on their recursive definition:

C++11-code 9.1: Evaluate Chebyshev polynomials

1 vector <double> chebPolyEval (const i n t &n , const double &x)

2 {

3 vector <double> V={1 , x } ;

4 for (i n t k =1; k<n ; k++)

5 V. push_back(2∗x∗V[k]−V[k−1]) ;

6 return V;

7 }

(d) Given a function f ∈ C0([−1, 1]), find the best approximation qn ∈ Pn of f in the discrete L2-norm:

qn = argmin
p∈Pn

| f − p|n+1 ,

2

https://en.wikipedia.org/wiki/Chebyshev_polynomials

where |v|n+1 =
√

(v, v)n+1 for any v. Represent qn as an expansion in Chebyshev polynomials:

qn =
n

∑
j=0

αjTj , (9.8)

for suitable coefficients αj ∈ R. The task boils down to determining the coefficients αj.

(e) Implement a C++ function that returns the vector of coefficients (αj)j in Eq. (9.8) given a function f :

template <typename Function>

void bestApproxCheb(const Function &f, Eigen::VectorXd &alpha)

Note that the degree of the polynomial is indirectly passed with the length of the output alpha. The

input f is a lambda-function, example:

auto f = [] (double & x) { r e t u r n 1/(pow(5*x,2)+1);};

(f) Test bestApproxCheb for the function f (x) = 1
(5x)2+1

and n = 20. Approximate the supremum

norm of the approximation error by sampling on an equidistant grid with 106 points.

3

	Problem 9.1: Adaptive polynomial interpolation
	Problem 9.2: Chebyshev polynomials and their properties

