NumCSE

Autumn Semester 2017
Prof. Rima Alaifari

Exercise sheet 9
Function Approximation

P. Bansal

Problem 9.1: Adaptive polynomial interpolation

For approximating a given function by a polynomial interpolant upto a desired tolerance, position
of the interpolation nodes is crucial. Here, we look at an a posteriori adaptive strategy that em-
ploys a greedy algorithm to build the set of interpolation nodes based on intermediate interpolants.

Templates: adapPolyIpol.cpp, newtonIpol.hpp

The greedy algorithm for adaptive polynomial interpolation is described below:

Given a function f : [a,b] — R, start with an initial node set 7y := {3(b+4a)}. Based on a
fixed finite set S C [a, b] of sampling points, augment the set of nodes as

Toi1=TaU {argmax |f(t) — I7;l(t)|} , (9.1)
teS
where |7 is the polynomial interpolation operator for the node set 7;,, until
ma t) — Il (t)] < tol-ma t)| . 9.2
max|£(t) = b7, (£)| < tol - max|f(t) 92)

First, we need a function which computes the interpolating polynomial for a given set of nodes.

(@) Implement a C++ function

VectorXd divDiff (const VectorXds t, const VectorXds vy);

which computes the coefficients of the polynomial interpolant using divided differences, refer tablet
notes. Here, t and y are the interpolation nodes and the corresponding function values.

(b) Implement a C++ function

template <class Function>

VectorXd adapPolyIpol(const Function& f, double a, double b,
double tol, int N,
Eigen::VectorXds adaptive_nodes);

that implements the algorithm described above. The arguments are: the function handle £, the interval
bounds a, b, the relative tolerance tol, the number N of equidistant sampling points to compute the
error:

S = {a—i—(b—a)%,jzo,...,N}.

and the final set of interpolation nodes returned in adapt ive_nodes. For each intermediate set 7,
adapPolyIpol should compute the error:

€, :=max |f(t) — Tz, (t)] (9.3)
tes

and return these error values in a vector.

Remark: Use a suitable lambda function for the type Function and use the function intPolyEval
defined in newtonIpol . hpp to evaluate the polynomial interpolant.

(c) For fi(t) :=sin(e?) and f>(t) = 1+\{2t2 plot €, versus n, the number of interpolation nodes, in the

interval [a, b] = [0, 1] using N=1000 sampling points and tol = le-6.

Problem 9.2: Chebyshev polynomials and their properties

In this problem, we will examine Chebyshev polynomials and a few of their many properties.
Templates: bestApproxCheb. cpp

Let T;, € P, be the n-th Chebyshev polynomial and C(()n), ceey C(n) be the n zeros of T}, where

n—1

g(”):cos<2]+1n>, j=0,...,n—1 (9.4)

J 2n

Define a family of discrete L? semi-inner products (i.e. not conjugate symmetric):

n—1
(f,9)n =Y f&")3(E"), f.gecC(-11) (9.5)
j=0
Also define a special weighted L? semi-inner product:
1 1
frghi= [| =5/ Dsdt fg€ C(=1,1) (©8)

(a) Show that the Chebyshev polynomials are orthogonal w.r.t. the semi-inner product defined in
Eq. (9.6), i.e. (Tk, Tj)w = O for every k # L.

Hint: Use the trigonometric identity 2 cos(x) cos(y) = cos(x + y) + cos(x — v).

Consider the following statement:

Theorem 9.7.

The family of polynomials {Ty, . .., T, } is an orthogonal basis of P,, with respect to the inner product
(v, *)n+1 defined in Eq. (9.5).

(b) Prove Thm. 9.7. Hint: Use the relationship of trigonometric functions and the complex exponential.
(¢) Implement a C++ code to numerically test the assertion of Thm. 9.7.

Use the following code for evaluating Chebyshev polynomials based on their recursive definition:

C++11-code 9.1: Evaluate Chebyshev polynomials

vector<double> chebPolyEval(const int &n,const double &x)
{
vector<double> V={1,x};
for (int k=1; k<n; k++)
V.push_back(2xx*V[k]—V[k—1]);
return V;

N o o 9~ o Moo=

(d) Givenafunction f € C°([—1,1]), find the best approximation g,, € Py, of f in the discrete L?-norm:

qn = argmin|f — ply41,
pEPn

https://en.wikipedia.org/wiki/Chebyshev_polynomials

where [v],11 = \/(v,0),, for any v. Represent q,, as an expansion in Chebyshev polynomials:
n
g =Y T}, (9.8)
j=0

for suitable coefficients «; € R. The task boils down to determining the coefficients «;.
(e) Implement a C++ function that returns the vector of coefficients («;); in Eq. (9.8) given a function f:

template <typename Function>
void bestApproxCheb(const Function &f, Eigen::VectorXd &alpha)

Note that the degree of the polynomial is indirectly passed with the length of the output alpha. The
input f is a lambda-function, example:

auto £ = [] (double & x) {return 1/ (pow(5x%x,2)+1);};

(f) Test bestApproxCheb for the function f(x) = (590%“ and n = 20. Approximate the supremum

norm of the approximation error by sampling on an equidistant grid with 10° points.

	Problem 9.1: Adaptive polynomial interpolation
	Problem 9.2: Chebyshev polynomials and their properties

