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Problem 2.1: Solving sequential linear systems

Given a matrix A and vectors b1, . . . , bm we want to find (efficiently) vectors x1, . . . , xm such that

Axi = bi for every i = 1, . . . , m.

Template: solveSeqSystems.cpp

(a) Implement a C++ function which accepts as input an n × n matrix A, an n × m matrix B, an n × m
matrix X, and overwrites X so that

A(Xi) = B
i (2.1)

holds for every i. The superscript notation Xi indicates the i-th column of X. Use a decomposition and

solver of your choice (for example FullPivLU() from Eigen) at every step i.

(b) In another C++ function, design an efficient implementation of Point (a) using the LU-decomposition

of A.

(c) What is the complexity of each of your implementations?
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Problem 2.2: Blockwise linear solver

We want to solve a linear system where the matrix has a structure particularly suitable for block

operations.

Template: blockLinSolvers.cpp

Let

A =

[

R v

uT 0

]

(2.2)

where u, v ∈ R
n and R ∈ R

n,n is upper triangular and invertible.

We first use an approach which relies on LU-decomposition.

(a) Compute the blockwise LU-decomposition of A.

(b) Show that A is invertible if and only if uTR−1v 6= 0.

(c) Implement a C++ function which accepts as input R, u, v, b, x and writes in x the solution of Ax = b,

where A is the matrix given in (2.2). Make use of the blockwise LU-decomposition you derived in Point

(a) and only use elementary operations (no solvers from Eigen).

(d) What is the asymptotic complexity of your implementation?

We move on to an approach which relies on blockwise Gaussian elimination.

(e) Determine expressions for z ∈ R
n, ξ ∈ R such that

[

R v

uT 0

][

z

ξ

]

=

[

b

β

]

for arbitrary b ∈ R
n, β ∈ R.

Hint: Use blockwise Gaussian elimination.

(f) Implement a C++ function as in Point (c) which computes the solution to Ax = b. This time however,

use the blockwise decomposition from Point (e).

Hint: You can rely on the triangularView() function to instruct EIGEN of the triangular structure

of R.

(g) What is the asymptotic complexity of your implementation?
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Problem 2.3: Resistance to impedance map

We apply the Sherman-Morrison-Woodbury update formula to analyze an electric circuit.

Template: circuitImpedance.cpp

We want to compute the impedance of the circuit drawn in Fig. 1 as a function of a variable resistance of

a single circuit element.

The circuit contains 27 identical linear resistors with resistance R = 1, and a variable resistance Rx

between nodes 14 and 15. Excitation is provided by a voltage V imposed at node 16. We consider only

direct current operation (stationary setting), that means all currents and voltages are real-valued.

Fig. 1
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(a) (optional) Compute voltages and currents in the circuit by means of nodal analysis. Understand how

this leads to a linear system of equations for the unknown nodal potentials (the fundamental laws of

circuit analysis should be known from physics as well as the principles of nodal analysis). The circuit

matrix ARx and the right-hand-side b of the resulting linear system is already coded in the template; if

you do not want to derive it yourself you can directly skip to the next point.

Hint: use Kirchhoff’s current law and Ohm’s law to determine the coefficients of the matrix ARx such

that ARx v = b, where vi is the voltage at node i, and b is the zero vector (except for the position

corresponding to the source term at node 16).

(b) Characterize the change in the circuit matrix ARx induced by a change in the value of Rx as a low-rank

modification of the circuit matrix A1 (that is the matrix ARx with Rx = 1). Use the matrix A1 as your

“base state”.

Hint: four entries of the circuit matrix will change. This amounts to a rank-1-modification for suitable

vectors.

(c) Using EIGEN, implement a C++ function which returns the impedance of the circuit from Figure 1, when

supplied with A
−1
1

and a specific value for Rx. Recall that the impedance of the circuit is the quotient of

the voltage at node 16 with the current through node 16. This function should be implemented efficiently

using the Sherman-Morrison-Woodbury formula.

(d) Test your function using V = 1 and Rx = 1, 2, 22, . . . , 210 (as a reference value, for Rx = 1024 you

should obtain an impedance of 2.65744).
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Problem 2.4: Triplet format to CRS format

We want to devise a function that converts a matrix given in triplet/coordinate list (COO) format to

the compressed row storage (CRS) format.

Template: COOtoCRS.cpp

Let A indicate an arbitrary matrix.

The COO format of A stores a collection of triplets (i, j, v), with i, j ∈ N the indices, and v ∈ R the non-

zero value which contributes to the element in position (i, j) of A. Multiple triplets corresponding to the

same position are allowed, meaning that multiple values with the same indices (i, j) should be summed

together to obtain the actual content in position (i, j) of A.

The CRS format uses three vectors:

1. val, which stores the values of the nonzero entries of A, read from left to right and then from top

to bottom;

2. col_ind, which stores the column indices of the elements in val;

3. row_ptr, which stores in position j the index of the entry in val which is the first element of the

row j of A.

The case of rows only made by zero elements require special consideration. The usual convention, which

we adopt, is that if the j-th row of the matrix is empty, then row_ptr has in position j the same entry

which is in position j + 1.

(a) Implement two C++ functions which respectively convert the COO and the CRS format to EIGEN dense

matrices. Implement two other C++ functions which convert EIGEN dense matrices to COO and CRS.

Hint 1: For COO, you can use Eigen::Triplet<double> to store each triplet and std::vector to

store the collection of triplets. For CRS, you can use three std::vector. You can either implement

wrapper classes for COO and CRS objects or work with the raw data structures.

Hint 2: If it is convenient, you can append to row_ptr the length of val minus 1.

(b) Write a C++ function that converts a matrix in COO format to a matrix in CRS format. Try to be as

efficient as possible.

Hint: use std::sort.

(c) What is the worst-case complexity of your function which converts COO to CRS?

(d) Test the correctness of your functions on the matrix provided in the template.
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Problem 2.5: Multiplication in COO format

We want to design an algorithm which computes efficiently the multiplication of two sparse matrices

in COO format.

Template: COOMult.cpp

(a) Is the product of two sparse matrices always sparse? If not, is it always dense?

Hint: think about simple matrices, only made of columns, rows or diagonals of ones.

(b) Implement a C++ function which computes the product between two matrices in COO format and

returns the result in COO format. Do not care about efficiency at this point.

(c) What is the asymptotic complexity of your naive implementation of Point (b)? Assume there are no

duplicates in the input triplet vectors.

(d) Implement a C++ function which computes the product between two matrices in COO format in an

efficient way.

Hint: sort the two lists of triplets in a convenient way.

(e) What is the asymptotic complexity of your efficient implementation? Assume there are no duplicates

in the input triplet vectors.

(f) Compare the timing of your functions for random matrices with different dimensions. Perform the

comparison first for products between sparse matrices, then for any kind of matrix.
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