
NumCSE

Autumn Semester 2017

Prof. Rima Alaifari

Exercise sheet 4

Constrained least squares,

singular value decomposition,

principal components analysis

A. Dabrowski

Problem 4.1: Matrix least squares in Frobenius norm

We use two different approaches (Lagrange multipliers and augmented normal equations) to solve

a constrained minimization problem.

Fix non-zero vectors z ∈ R
n and g ∈ R

n. We want to find the matrix M∗ which minimizes the Frobenius

norm among all matrices M which belong to the set

{M ∈ R
n,n, Mz = g}. (4.1)

Recall that the Frobenius norm is defined as

‖M‖F =

√

√

√

√

n

∑
i=1

n

∑
j=1

|Mi,j|2.

First, we look at the method of Lagrange multipliers to solve Eq. (4.1) analytically.

(a) Let L : R
n,n × R

n −→ R be the functional defined as

L(M, λ) = ‖M‖2
F + λ

⊤(Mz − g).

Derive simbolically the critical points of L, that is find analytically M and λ which solve ∇L(M, λ) = 0.

Another approach, which we now explore, is to recast Eq. (4.1) in a linear least squares form and use the

augmented normal equations method to compute the solution.

(b) Reformulate the problem as an equivalent standard linearly constrained least squares problem. That

is find suitable matrices A, C and vectors b and d, which you should specify based on z and g, so that

the minimization of

‖Ax − b‖2

among all x ∈ R
n2

such that

Cx = d

will be equivalent (after an appropriate reshaping of x) to the minimization of (4.1).

Hint: to define C you may use the Kronecker product.

(c) State the augmented normal equations corresponding to the constrained linear least squares prob-

lem of Point (b) and give necessary and sufficient conditions on g and z that ensure existence and

uniqueness of solutions.

(d) Implement a C++ function

Matr ixXd min_frob(const VectorXd &z, const VectorXd &g)

that computes the solution M∗ of the minimization of Eq. (4.1) given the vectors z, g ∈ R
n. Use the

augmented normal equations approach.

Hint: You may use

inc lude <unsupported/Eigen/KroneckerProduct>

(e) Using random vectors z and g, check with a numerical experiment that the matrix given by

gz⊤

‖z‖2
2

(4.2)

minimizes Eq. (4.1).

1

Problem 4.2: Recompression of the sum of low rank approximations of matrices

Large matrices of low rank can be stored more efficiently using their singular value decomposition.

However, adding two low rank matrices usually leads to an increase of the rank, requiring further

“recompression” by computing a low-rank best approximation of the sum. We want to implement

an efficient approach to recompression.

Template: lowRankRecompression.cpp.

(a) Show that for a matrix X ∈ R
m,n the following statements are equivalent:

(i) rank(X) = k

(ii) X = AB⊤ for A ∈ R
m,k, B ∈ R

n,k, k ≤ min{m, n}, both full rank.

Hint: for (i) ⇒ (ii) use SVD, for (ii) ⇒ (i) the definition of rank and its relation with the dimension of

the null-space.

(b) Implement a C++ function

void factorize(const Matr ixXd &X, i n t k, Matr ixXd &A,

Matr ixXd &B)

that factorizes the matrix X with rank(X) = k into AB⊤, as in (a).

Hint: Use function Eigen::svd and pay attention on how to return U, Σ and V correctly.

(c) Let A ∈ R
m,k, B ∈ R

n,k, and assume that k is much smaller than m and n. Write an efficient

C++ function that calculates a singular value decomposition of the product AB⊤ = UΣV⊤, where

orthogonal U, V ∈ R
n,k and Σ ∈ R

k,k:

void svd_AB(const Matr ixXd & A, const Matr ixXd & B, Matr ixXd & U,

Matr ixXd & S, Matr ixXd & V);

Hint: If you directly compute an SVD of AB⊤, you will always have to deal with dimensions m and n,

regardless of the smallness of k. Exploit the economical QR decomposition of both A and B separately

to reduce the problem to the computation of the SVD of a small matrix.

(d) What is the asymptotic computational cost of the function svd_AB for a small k and m = n → ∞?

Discuss the effort required by the different steps of your algorithm.

(e) If X, Y ∈ R
m,n satisfy rank(X) = rank(Y) = k, show that rank(X + Y) ≤ 2k.

(f) Consider AX, AY ∈ R
m,k, BX, BY ∈ R

n,k, X = AXB⊤
X and Y = AYB⊤

Y . Find a factorization of sum

X + Y as X + Y = AB⊤, with A ∈ R
m,2k and B ∈ R

n,2k.

(g) Implement the formula derived in the previous subproblems in an efficient C++ function

void lowRankApprox(const Matr ixXd &Ax, const Matr ixXd &Ay,

const Matr ixXd &Bx, const Matr ixXd &By, Matr ixXd &Az,

Matr ixXd &Bz),

where AZ ∈ R
m,k and BZ ∈ R

n,k are the two terms of the decomposition of Z = AZB⊤
Z , the rank-k

best approximation of the sum X + Y = AXB⊤
X + AYB⊤

Y :

Z = argmin
M∈R

m,n

rank(M)≤k

∥

∥

∥
AXB⊤

X + AYB⊤
Y − M

∥

∥

∥

F

Here AX, AY ∈ R
m,k and BX, BY ∈ R

n,k.

2

(h) What is the asymptotic computational cost of the function rank_k_approx for a small k and m =
n → ∞?

3

Problem 4.3: Face recognition by PCA

We apply principal component analysis to develop a recognition/classification technique for pictures

of faces.

Template: eigenfaces.cpp

In the folder basePictures, you can find M = 15 photos encoded with the PGM (Portable GrayMap)

ASCII format. They are essentially represented by an h × w matrix of integers between 0 and 255 (in our

case h = 231, w = 195).

(a) Through the load_png function the main function of eigenfaces.cpp loads every picture as a

flattened EIGEN vector of length hw. Compute the mean of all these vectors, and insert each vector

minus the mean as a column of a matrix A of size hw × M.

The covariance matrix of A is defined as AA⊤. The eigenvector of AA⊤ corresponding to the largest

eigenvalue represents the direction along which the dataset has the maximum variance. Therefore it

encodes the features which differ the most among faces. For this reason, since our interest is in recog-

nizing faces from their salient features, we want to compute the eigenvectors of AA⊤. We rename such

eigenvectors as eigenfaces (usually they are known as principal components).

(b) What is the size of AA⊤? How many non-zero eigenvalues can the matrix AA⊤ have at most?

(c) What is the size of A⊤A? How are the eigenvalues and eigenvectors of the matrix AA⊤ related re-

spectively to the eigenvalues and eigenvectors of A⊤A, and to the singular values and singular vectors

of A?

(d) Use the characterization of the previous point to compute with a C++ code the eigenvectors of AA⊤

using the SVD of A.

(e) Given a new face y, implement C++ code which computes its projection on the space spanned by the

eigenfaces, that is finds x such that Ux = (y− mean face), where U is the matrix of singular vectors

of A.

Hint: instead of solving the linear system, use the properties of the matrix U.

(f) Implement C++ code which computes the distance between the projection of the new face and the

projection of a column k for a generic k, and print the k which minimizes the distance.

(g) Test your code from the previous steps to try to recognize the pictures in the folder testPictures.

4

	Problem 4.1: Matrix least squares in Frobenius norm
	Problem 4.2: Recompression of the sum of low rank approximations of matrices
	Problem 4.3: Face recognition by PCA

