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Exercise 0.1. A first C++ primer.

a) Implement a function int recurFact(int n) which returns the factorial of n. Use a re-
cursive approach.

Solution:

int recurFact(int n) {

// recursive implementation of the factorial

if (n==0) {

return 1;

}

return n * recurFact(n-1);

}

b) Implement iteratively the factorial in the function int iterFact(int n).

Solution:

int iterFact(int n) {

// iterative implementation of the factorial

int out = 1;

while (n>0) {

out *= n;

n--;

}

return out;

}

c) How are integers stored/represented in memory? What about floating point numbers?

Solution: We always assume to use the g++ compiler. Integers of the type int are stored
in binary format in 32 contiguous bits1. Floating point numbers of the type double are
stored in 64 bits, the first one for the sign, the following 11 for the exponent, the last 52 for
the mantissa2.
1more specifically, gcc implements two’s complement representation (see for instance softwareengineering.

stackexchange.com/a/239039 for the most common types of memory representation of integers).
2for further information on floating point numbers and arithmetic we suggest the article What Every Com-

puter Scientist Should Know About Floating-Point Arithmetic, David Goldberg, ACM Computing Surveys,
March 1991.
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d) What is meant by function overloading?

Solution: When multiple functions share the same name but have different signatures.
An example are the functions int iterFact(int n) and long iterFact(long n). When
the function iterFact is run from the code, the compiler decides which definition to use
based on the input type.

e) For which n’s will your functions return an accurate value? What if we use long instead
of int? What if we use double? (you can access the maximum int with INT MAX, the
maximum long with LONG MAX, the maximum double with DBL MAX; to use these macros
include climits and float.h).

Solution: The accuracy of the results for int and long is determined by the maximum
number which we can represent with the considered type. A simple code which determines
in the variable i-1 the maximum number whose factorial can be represented with an int is
the following.

int i = 1;

double x = INT_MAX;

while (x >= 1) {

x /= ++i;

}

The accuracy for double decreases as we consider larger numbers, until the result overflows.
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Exercise 0.2. Passing arguments.

a) What is the difference between passing an argument by value or by reference to a function?
Solution: When an argument is passed by value its content is copied; when it is passed
by reference only the memory address of its content is copied.3 In the code of point b), n is
passed by value to copyAddOne and it is passed by reference to refAddOne.

b) What is the output of the following code?

#include <iostream>

void copyAddOne(int n) {

n++;

}

void refAddOne(int &n) {

n++;

}

int main () {

int n = 1;

copyAddOne(n);

std::cout << n << std::endl;

refAddOne(n);

std::cout << n;

}

Solution:

1

2

3Disclaimer: this is a nice and quick way to visualize what is happening, but it might not correspond to
what the compiled code actually does at the assembler level. For further details, see for instance http://www.

cs.mcgill.ca/~cs573/fall2002/notes/lec273/lecture15/15_4.htm for different possible implementations
of paramater passing.
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Exercise 0.3. Pointer games.

a) What is a pointer? How do the dereference operator * and the reference operator & work?
If p is a pointer, what is *(&p)?

Solution: A pointer p stores the address of a memory location. *p returns the content
of the memory address to which p points. When & is applied to any variable, it returns the
memory address of where the variable resides. Therefore *(&p) = p.

b) What value does the following function return?

int refAssignment() {

int *p = new int;

*p = 1;

int &r = *p;

r = 2;

return *p;

}

Solution: 2. The assignement int &r = *p just means: r is a new name for *p (it is but
a reference to the same object).

c) How are arrays stored in memory? When an assignment int x[2] = {1,2} is run, what is
x? What is &(x[0])?

Solution: An array is stored as contiguous cells in memory. After the assignment, x is
an array of two int. If we try to print the value of x however, we simply get the address
of the first element of the array, which is &(x[0]). Therefore we can think, as a first
approximation, of an array and of a pointer to its first element as the same thing4.

d) What is meant by operator overloading?

Solution: It is a special case of function overloading, when the function is an operator
like +, -, =, ... . For example, when p is a pointer to an array of int which starts at byte
0x172ac20 (the 0x suffix indicates hexadecimal notation), then p++ will point to 0x172ac24,
the position of the next int in the array (recall that an int is stored in 4 bytes = 4 · 8 bits,
thus the addition of 4 to the hexadecimal address). Instead, when p is for example a pointer
to an array of double which starts at byte 0x172ac20, then p++ will point to 0x172ac28.

e) What value does the following function return? Why?

int pointerShift() {

int *p = new int[5];

for (int i=0; i<5; i++)

p[i] = i;

p++;

return p[2];

}

Solution: 3. The reason is explained in the example of point d).

4as a second approximation however, we remark that the compiler can distinguish between an array and
a pointer (for example, you can recover the size of an array with the function sizeof). See for instance
stackoverflow.com/questions/3959705 for a more thorough discussion.
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Exercise 0.4. (Long). Linked lists, fractals, and plotting.

a) We represent a polygonal curve in the plane as a sequence of points. We arrange the points
in a singly linked list. For this purpose implement a class Point which stores the coordinates
double x, double y of the current point and a reference *next to the next point of the
curve (*next should be Null for the last point). Notice that with these conventions, the
first point is enough to represent the whole polygonal curve.

Solution:

class Point {

public:

double x,y;

Point *next;

Point (double x, double y) {

this->x = x;

this->y = y;

this->next = NULL;

}

};

b) Implement a function double length() in the class Point which returns the length of the
curve starting at that point.

Solution:

static double dist(Point &a, Point &b) {

// returns euclidean distance between two points

double dx = a.x - b.x;

double dy = a.y - b.y;

return sqrt(dx*dx + dy*dy);

}

double length() {

// returns euclidean length of polygonal curve

Point *iter = this;

double len = 0;

while (iter->next != NULL) {

len += dist(*iter, *iter->next);

iter=iter->next;

}

return len;

}

c) Implement a function void plot() which plots the curve. (You can use whatever plotting
solution you prefer; we suggest to use MathGL, since its most simple functionalities will be
used occasionally throughout the course).

Solution:

void toArrays(double* xcoords, double* ycoords, int len) {

// writes in *xcoords and *ycoords the coordinates of
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// the first len points of the curve

Point *iter = this;

for (int i=0; i<len; i++) {

xcoords[i] = iter->x;

ycoords[i] = iter->y;

iter = iter->next;

}

}

int countPoints() {

// returns number of points until end of curve

// (current point included in the count)

int counter = 1;

Point *iter = this->next;

while (iter != NULL) {

counter++;

iter=iter->next;

}

return counter;

}

void plot(const char *name) {

// saves plot of the curve in the file *name

int len = this->countPoints();

double* xcoords = new double[len];

double* ycoords = new double[len];

this->toArrays(xcoords, ycoords, len);

mglData datx, daty;

datx.Link(xcoords, len);

daty.Link(ycoords, len);

mglGraph gr;

gr.SetRanges(0,1,0,.5);

gr.Plot(datx, daty, "0");

mglPoint pleftdown(0,0), prightup(1,.5);

gr.SetCutBox(pleftdown, prightup);

gr.WriteFrame(name);

}

d) Let Γ be the segment joining two points p1, p2 in the plane. Consider the following geometric
construction:

• divide Γ into three segments of equal length;

• draw an equilateral triangle that has as base the middle segment and points to the left
if we traverse Γ from p1 to p2;

• remove the line segment which is the base of the equilateral triangle.

After the construction we are left with a new polygonal curve made up of 4 different seg-
ments. (The effect of such a construction applied to the segment joining (0, 0) and (1, 0) is
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Figure 1: A single application of fractalizeSegment() to a segment.

presented in Figure 1.) Given a segment represented by Point p, implement this procedure
in a function void fractalizeSegment().

Solution:

void fractalizeSegment() {

// constructs a triangular bump on the first segment

Point *n = this->next;

// calculation of coordinates of the points used in the construction

double xonethird = (2*this->x + n->x)/3;

double yonethird = (2*this->y + n->y)/3;

double xmid = 1./2*(this->x + n->x);

double ymid = 1./2*(this->y + n->y);

double xtwothird = (this->x + 2*n->x)/3;

double ytwothird = (this->y + 2*n->y)/3;

double yperp = xtwothird - xonethird;

double xperp = - ytwothird + yonethird;

// creation of points and pointer referencing

Point *p1 = new Point(xonethird, yonethird);

Point *p2 = new Point(xmid + xperp*sqrt(3)/2, ymid + yperp*sqrt(3)/2);

Point *p3 = new Point(xtwothird, ytwothird);

p3->next = n;

this->next = p1;

p1->next = p2;

p2->next = p3;

}

e) Consider the following iterative geometric construction:

• (Stage 0) Let Γ0 be the segment joining the points (0, 0), (1, 0);

• (Stage 1) Apply the procedure of point c) to obtain a new polygonal curve Γ1 made of
4 segments;

• . . .

• (Stage n) To each subsegment of Γn−1, apply again the procedure of point c) to obtain
a new polygonal Γn made of 4n−1 segments.

(Stage 5 of the procedure starting from the segment joining (0, 0) and (1, 0) is presented
in Figure 2.) Implement a single stage of this recursive construction in a function void

fractalize(Point &p).

Solution:
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Figure 2: The fifth application of fractalize() to a segment.

void fractalize() {

// repeats fractalizeSegment on every subsegment of a iteratively

Point *iter1 = this;

Point *iter2 =this->next;

while (iter2 != NULL) {

iter1->fractalizeSegment();

iter1 = iter2;

iter2 = iter1->next;

}

}

f) Plot the length of the curve at the nth stage for n which varies from 1 to 12. Does it seem
to converge to a finite value as n grows? Should it?

Solution:

int main() {

// Initialization

Point p1(0,0);

Point p2(1,0);

p1.next = &p2;

int nStages = 12;

double *lengths = new double[nStages];

// fractalizes the segment and calculates the lengths

for (int k=0; k<nStages; k++) {

p1.fractalize();

lengths[k] = p1.length();

}

// plots length of curve as a function of stage

mglData data;

data.Link(lengths, nStages);

mglGraph gr;

gr.SetRanges(0,nStages,0,nStages*3);

gr.Plot(data);

gr.Axis();

gr.Label(’x’,"Stage");

gr.Label(’y’,"Length");

gr.WriteFrame("lengthsPlot.png");

}
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Figure 3: Length vs stage.

The length at the nth step is given by the length at the n− 1 step plus the length of 4n−1

segments of length 3n. Therefore the length at the nth step can be rewritten as

1 +
1

3

n∑
k=0

(
4

3

)k

,

which goes to infinity as n goes to infinity (since the generic term in the previous sum is
always larger than 1).
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Exercise 0.5. A second C++ primer.

a) Implement template functions iterFact and recurFact which calculate the factorial, re-
spectively iteratively and recursively. They should be able to handle any number as input
(for example int or long, with the convention that the factorial of a double is the factorial
of its integer part), and return an output of the same type as the input.

Solution:

template<typename T>

T recFact(T n) {

if (n<=0) return 1;

return n * recFact(n-1);

}

template<typename T>

T iterFact(T n) {

T out = 1;

while (n>0) {

out *= n;

n--;

}

return out;

}

b) Implement a function double funcTimer, which takes as arguments a function f, a pointer
input to an array of length inputL, and returns the time it took to run f(x) where x loops
on the elements of *input (to time processes you can use ctime or, better, chrono5).

Solution:

template<typename T>

double funcTimer (T (f)(T), int* input, int inputL) {

// returns the time the function f took to run on

// all elements of input.

auto start = std::chrono::system_clock::now();

for (int i=0; i<inputL; i++) {

f(input[i]);

}

auto end = std::chrono::system_clock::now();

auto elapsed = end - start;

return elapsed.count();

}

c) Implement a function int* createRandNums, which takes as input integers N, k1 and k2,
and returns a pointer to an array of N integers chosen randomly and uniformly from the
interval [k1, k2] (to generate random numbers uniformly distributed you can use rand).

Solution:

5for the documentation see www.cppreference.com.
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int* createRandArray(int N, int k1, int k2) {

// returns N integers chosen randomly from [k1,k2]

int* randNums = new int[N];

srand(time(NULL));

for (int i=0; i<N; i++) {

randNums[i] = k1 + rand() % (1 + k2 - k1);

}

return randNums;

}

d) Calculate the elapsed time ratio between the recursive and the iterative implementation on
a random array for different values of N, k1, k2 (for instance you might try N=107, k1=5,
k2=25). Is the iterative version faster or slower than the recursive one? Why? You might
also try running your code changing the level of optimization (for example, with the g++

compiler, by adding the flag -O3).

Solution:

int main ()

{

int N = 10000000, k1 = 5, k2 = 25;

int *randNums = createRandArray(N, k1, k2);

double timeRecFact = funcTimer(recFact<long>, randNums, N);

double timeIterFact = funcTimer(iterFact<long>, randNums, N);

cout << timeRecFact / timeIterFact;

}

Without any optimization, the recursive version is slower, since additional allocation and
access on the stack memory are required for recursion. However, when higher optimization
is requested, the compiler is able to recognize that the calls in the factorial can be rewritten
iteratively, and it does so.
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