
NumCSE

Autumn Semester 2017

Prof. Rima Alaifari

Exercise sheet 2

Linear systems, sparse matrices

A. Dabrowski

Problem 2.1: Solving sequential linear systems

Given a matrix A and vectors b1, . . . , bm we want to find (efficiently) vectors x1, . . . , xm such that

Axi = bi for every i = 1, . . . , m.

Template: solveSeqSystems.cpp

(a) Implement a C++ function which accepts as input an n × n matrix A, an n × m matrix B, an n × m
matrix X, and overwrites X so that

A(Xi) = B
i (2.1)

holds for every i. The superscript notation Xi indicates the i-th column of X. Use a decomposition and

solver of your choice (for example FullPivLU() from Eigen) at every step i.

SOLUTION:

1 void solve_naive (const MatrixXd &A, const MatrixXd &b , MatrixXd &X) {

2

3 for (i n t i = 0 ; i < b . cols () ; i ++) {

4 X. col (i) = A . f u l l P i v L u () . solve (b . col (i)) ;

5 }

6 }

(b) In another C++ function, design an efficient implementation of Point (a) using the LU-decomposition

of A.

SOLUTION:

1 void solve_LU (const MatrixXd &A, const MatrixXd &b , MatrixXd &X) {

2

3 Ful lPivLU <MatrixXd> LU = A. f u l l P i v L u () ;

4

5 for (i n t i = 0 ; i < b . cols () ; i ++) {

6 X. col (i) = LU . solve (b . col (i)) ;

7 }

8 }

(c) What is the complexity of each of your implementations?

SOLUTION:

The complexity of the LU decomposition of an n× n matrix is O(n3). The complexity of backsubstitution

for a matrix of size n × n is O(n2). Therefore performing both LU decomposition and backsubstitution

m times has a cost of O(mn3) operations, while performing once the LU decomposition and m times

only the backsubstitution has a cost of O(mn2 + n3). If m ≃ n, the first strategy has complexity O(n4)
while the second O(n3).

1

Problem 2.2: Blockwise linear solver

We want to solve a linear system where the matrix has a structure particularly suitable for block

operations.

Template: blockLinSolvers.cpp

Let

A =

[

R v

uT 0

]

(2.2)

where u, v ∈ R
n and R ∈ R

n,n is upper triangular and invertible.

We first use an approach which relies on LU-decomposition.

(a) Compute the blockwise LU-decomposition of A.

SOLUTION:

The LU-decomposition is:

A = LU =

[

I 0
uTR−1 1

][

R v

0 −uTR−1v

]

(b) Show that A is invertible if and only if uTR−1v 6= 0.

SOLUTION:

A is regular if and only if det(A) 6= 0.

det(A) = det(L)det(U) = det(L)det(R)(uT
R
−1

v) (2.3)

det(L) = 1 and R is regular, so det(R) 6= 0, which leaves uTR−1v 6= 0 as necessary and sufficient

condition.

(c) Implement a C++ function which accepts as input R, u, v, b, x and writes in x the solution of Ax = b,

where A is the matrix given in (2.2). Make use of the blockwise LU-decomposition you derived in Point

(a) and only use elementary operations (no solvers from Eigen).

SOLUTION:

1 VectorXd solve_backSub (const MatrixXd& R, const VectorXd& c)

2 {

3 i n t n = R. rows () ;

4 VectorXd y (n) ;

5

6 // Since R is upper triangular, we can solve by backwards substitution

7 for (i n t i = n−1; i >= 0; −− i)

8 {

9 y (i) = c (i) ;

10 for (i n t j = n−1; j > i ; −− j)

2

11 {

12 y (i) −= R(i , j) ∗ y (j) ;

13 }

14 y (i) /= R(i , i) ;

15 }

16 return y ;

17 }

18

19 void solve_blockLU (const MatrixXd &R,

20 const VectorXd &u ,

21 const VectorXd &v ,

22 const VectorXd &b ,

23 VectorXd &x) {

24

25 i n t n = R. rows () ;

26 VectorXd y (n+1) ;

27 //

28 // Solve Ly = b by forward substitution.

29 y . head (n) = b . head (n) ;

30 y (n) = b (n) − u . transpose () ∗ solve_backSub (R, y . head (n)) ;

31

32 // Solve Ux = y by backward substitution.

33 MatrixXd U(n+1 ,n+1) ;

34 U << R, v ,

35 VectorXd : : Zero (n) . transpose () , −u . transpose () ∗solve_backSub (R, v) ;

36

37 x = solve_backSub (U, y) ;

38 }

(d) What is the asymptotic complexity of your implementation?

SOLUTION:

The backward substitution for R−1x is O(n2), vector dot product and subtraction of vectors is O(n), so

that the complexity is dominated by the backward substitution: O(n2).

We move on to an approach which relies on blockwise Gaussian elimination.

(e) Determine expressions for z ∈ R
n, ξ ∈ R such that

[

R v

uT 0

][

z

ξ

]

=

[

b

β

]

for arbitrary b ∈ R
n, β ∈ R.

Hint: Use blockwise Gaussian elimination.

SOLUTION:

3

Applying the block Gauss elimination, we obtain:

[

1 0
0 1

][

z

ξ

]

=

[

R−1(b − vs−1bs)
s−1bs

]

with s := −(u⊤R−1v), bs := (β − u⊤R−1b).

(f) Implement a C++ function as in Point (c) which computes the solution to Ax = b. This time however,

use the blockwise decomposition from Point (e).

Hint: You can rely on the triangularView() function to instruct EIGEN of the triangular structure

of R.

SOLUTION:

1 void solve_blockGauss (const MatrixXd &R,

2 const VectorXd &u ,

3 const VectorXd &v ,

4 const VectorXd &b ,

5 VectorXd &x) {

6

7 i n t n = R. rows () ;

8

9 const Tr iangularView <const MatrixXd , Upper> & t r i R =

R. triangularView <Upper > () ;

10

11 double s inv = − 1. / u . dot (t r i R . solve (v)) ;

12 double bs = (b (n) − u . dot (t r i R . solve (b . head (n)))) ;

13 double s invbs = s inv∗bs ;

14

15 x << t r i R . solve (b . head (n) − v∗s invbs) ,

16 s invbs ;

17 }

(g) What is the asymptotic complexity of your implementation?

SOLUTION:

As before, the complexity is dominated by the backward substitution, this time hidden in the solver for

the triangular view matrix, but still of complexity O(n2).

4

Problem 2.3: Resistance to impedance map

We apply the Sherman-Morrison-Woodbury update formula to analyze an electric circuit.

Template: circuitImpedance.cpp

We want to compute the impedance of the circuit drawn in Fig. 1 as a function of a variable resistance of

a single circuit element.

The circuit contains 27 identical linear resistors with resistance R = 1, and a variable resistance Rx

between nodes 14 and 15. Excitation is provided by a voltage V imposed at node 16. We consider only

direct current operation (stationary setting), that means all currents and voltages are real-valued.

Fig. 1

6

~~

Rx 16

10

1 2 3 4

5 6

7 8 9

11 12 13

14 15

17

RR

R
RR

R
R

R

R

R
R

R

RR

R RR

R

RR

R

RR

R

RR

R

V

(a) (optional) Compute voltages and currents in the circuit by means of nodal analysis. Understand how

this leads to a linear system of equations for the unknown nodal potentials (the fundamental laws of

circuit analysis should be known from physics as well as the principles of nodal analysis). The circuit

matrix ARx and the right-hand-side b of the resulting linear system is already coded in the template; if

you do not want to derive it yourself you can directly skip to the next point.

Hint: use Kirchhoff’s current law and Ohm’s law to determine the coefficients of the matrix ARx such

that ARx v = b, where vi is the voltage at node i, and b is the zero vector (except for the position

corresponding to the source term at node 16).

SOLUTION:

We use Kirchhoff’s first law, stating that the sum of the currents incident to a node is zero. We use Ohm’s

law to rewrite the current in terms of voltage and resistance: the current flowing in connection a to b is

Ia,b := ∆a,bv/R. Here, we denote by ∆vi,j := (vi − vj). Let v ∈ R
17 be the vector of voltages at the

nodes. Set fRx := R/Rx. The system (obtained applying Kirchhoff’s law for each node i = 1, . . . , 15)

5

becomes:

∆v1,2 + ∆v1,5 = 0

∆v2,1 + ∆v2,3 + ∆v2,5 + ∆v2,14 = 0

∆v3,2 + ∆v3,4 + ∆v3,15 = 0

∆v4,3 + ∆v4,6 + ∆v4,15 = 0

∆v5,1 + ∆v5,2 + ∆v5,7 + ∆v5,14 = 0

∆v6,4 + ∆v6,9 + ∆v6,15 + ∆v6,16 = 0

∆v7,5 + ∆v7,10 + ∆v7,11 + ∆v7,17 = 0

∆v8,9 + ∆v8,12 + ∆v8,13 + ∆v8,5 = 0

∆v9,6 + ∆v9,8 + ∆v9,13 = 0

∆v10,7 + ∆v10,11 = 0

∆v11,7 + ∆v11,10 + ∆v11,12 + ∆v11,17 = 0

∆v12,8 + ∆v12,11 + ∆v12,13 = 0

∆v13,8 + ∆v13,9 + ∆v13,12 = 0

∆v14,2 + ∆v14,5 + ∆v14,17 + fRx ∆v14,15 = 0

∆v15,3 + ∆v15,4 + ∆v15,6 + ∆v15,8 + fRx ∆v15,14 = 0.

(2.4)

We rescaled each equation multiplying by R. We have the extra conditions v16 := V and v17 = 0, due

to the ground/source voltages. The unknowns of the system are voltages vj for j = 1, . . . , 15. Define

x := [v1, . . . , v15]
⊤,

ARx =

2 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0 0 0 0 0 −1 0
0 −1 3 −1 0 0 0 0 0 0 0 0 0 0 −1
0 0 −1 3 0 −1 0 0 0 0 0 0 0 0 −1
−1 −1 0 0 4 0 −1 0 0 0 0 0 0 −1 0
0 0 0 −1 0 4 0 0 −1 0 0 0 0 0 −1
0 0 0 0 −1 0 4 0 0 −1 −1 0 0 0 0
0 0 0 0 0 0 0 4 −1 0 0 −1 −1 0 −1
0 0 0 0 0 −1 0 −1 3 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0 0 2 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 −1 4 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0 −1 3 −1 0 0
0 0 0 0 0 0 0 −1 −1 0 0 −1 3 0 0

0 −1 0 0 −1 0 0 0 0 0 0 0 0 3 + R
Rx

− R
Rx

0 0 −1 −1 0 −1 0 −1 0 0 0 0 0 − R
Rx

4 + R
Rx

and b ∈ R
15 as the zero vector except in position 5 where it takes value V. Then the linear system

which we want to solve is

ARx x = b.

(b) Characterize the change in the circuit matrix ARx induced by a change in the value of Rx as a low-rank

modification of the circuit matrix A1 (that is the matrix ARx with Rx = 1). Use the matrix A1 as your

“base state”.

Hint: four entries of the circuit matrix will change. This amounts to a rank-1-modification for suitable

vectors.

6

SOLUTION:

Define f := R/Rx and the vectors

u :=

0
...

0
1
−1

, v :=

0
...

0
f − 1
1 − f

.

Then

ARx = A1 + uv
⊤.

Then from the SMW formula

A
−1
Rx

= A
−1
1 −

A
−1
1 uv⊤A

−1
1

1 + v⊤A
−1
1 u

.

(c) Using EIGEN, implement a C++ function which returns the impedance of the circuit from Figure 1, when

supplied with A
−1
1 and a specific value for Rx. Recall that the impedance of the circuit is the quotient of

the voltage at node 16 with the current through node 16. This function should be implemented efficiently

using the Sherman-Morrison-Woodbury formula.

SOLUTION:

1 double calc_impedance (const MatrixXd &A1inv , const VectorXd &b , double Rx ,

double V) {

2

3 // create u and v

4 double f = 1 /Rx ;

5 VectorXd u = VectorXd : : Zero (b . size ()) ;

6 VectorXd v = VectorXd : : Zero (b . size ()) ;

7 u (13) = 1 ;

8 u (14) = −1;

9 v (13) = f −1;

10 v (14) = 1− f ;

11

12 // Use SMW formula

13 double alpha = 1 + v . transpose () ∗ A1inv ∗ u ;

14 VectorXd y = A1inv ∗ b ;

15 VectorXd x = y − A1inv ∗ u ∗ v . transpose () ∗ y / alpha ;

16

17 return V / (V − x (5)) ;

18 }

(d) Test your function using V = 1 and Rx = 1, 2, 22, . . . , 210 (as a reference value, for Rx = 1024 you

should obtain an impedance of 2.65744).

SOLUTION:

7

1 for (i n t i = 0 ; i <= 10; i ++) {

2 std : : cout << " For Rx = 2^ " << i << " the impedance i s "

3 << calc_impedance (A1inv , b , 1 << i , V) << std : : endl ;

4 }

8

Problem 2.4: Triplet format to CRS format

We want to devise a function that converts a matrix given in triplet/coordinate list (COO) format to

the compressed row storage (CRS) format.

Template: COOtoCRS.cpp

Let A indicate an arbitrary matrix.

The COO format of A stores a collection of triplets (i, j, v), with i, j ∈ N the indices, and v ∈ R the non-

zero value which contributes to the element in position (i, j) of A. Multiple triplets corresponding to the

same position are allowed, meaning that multiple values with the same indices (i, j) should be summed

together to obtain the actual content in position (i, j) of A.

The CRS format uses three vectors:

1. val, which stores the values of the nonzero entries of A, read from left to right and then from top

to bottom;

2. col_ind, which stores the column indices of the elements in val;

3. row_ptr, which stores in position j the index of the entry in val which is the first element of the

row j of A.

The case of rows only made by zero elements require special consideration. The usual convention, which

we adopt, is that if the j-th row of the matrix is empty, then row_ptr has in position j the same entry

which is in position j + 1.

(a) Implement two C++ functions which respectively convert the COO and the CRS format to EIGEN dense

matrices. Implement two other C++ functions which convert EIGEN dense matrices to COO and CRS.

Hint 1: For COO, you can use Eigen::Triplet<double> to store each triplet and std::vector to

store the collection of triplets. For CRS, you can use three std::vector. You can either implement

wrapper classes for COO and CRS objects or work with the raw data structures.

Hint 2: If it is convenient, you can append to row_ptr the length of val minus 1.

SOLUTION:

From dense to COO.

1 MatrixCOO (MatrixXd &A) {

2 // constructor from Eigen dense matrix

3 for (i n t i =0; i < A . rows () ; i ++) {

4 for (i n t j =0; j < A . cols () ; j ++) {

5 i f (A(i , j) != 0) {

6 Tr ip le t <double> t (i , j , A(i , j)) ;

7 l i s t . push_back (t) ;

8 }

9 }

10 }

11 }

From COO to dense.

1 MatrixXd toDense () {

2 // returns an Eigen dense version

9

3 MatrixXd dense (this−>rows () , this−>cols ()) ;

4 for (auto t : l i s t) {

5 dense (t . row () , t . col ()) = t . value () ;

6 }

7 return dense ;

8 }

From dense to CRS.

1 MatrixCRS (MatrixXd &A) {

2 // constructor from Eigen dense matrix

3 i n t nnz = 0; // number of non-zero elements

4 i n t prevNotEmptyRow = −1;

5

6 // fill up val and colind by looping through triplets

7 // some additional care must be taken for empty rows for rowptr

8 for (i n t i =0; i < A . rows () ; i ++) {

9 bool emptyRow = true ;

10

11 for (i n t j =0; j < A . cols () ; j ++) {

12 i f (A(i , j) != 0) {

13 nnz++;

14 va l . push_back (A(i , j)) ;

15 co l_ ind . push_back (j) ;

16 emptyRow = fa lse ;

17 }

18 }

19

20 i f (! emptyRow) {

21 for (i n t c = prevNotEmptyRow ; c < i ; c++) {

22 row_ptr . push_back (nnz) ;

23 }

24 prevNotEmptyRow = i ;

25 }

26 }

27 }

From CRS to dense.

1 MatrixXd toDense () {

2 // conversion to Eigen dense matrix

3 i n t nRows = this−>rows () ;

4 MatrixXd dense (nRows , this−>cols ()) ;

5 i n t row = 0;

6 i n t i = 0 ;

7

8 while (row < nRows) {

9 do { // some extra care for empty rows

10 row++;

11 } while (row_ptr [row−1] == row_ptr [row]) ;

12

13 while (i < row_ptr [row]) {

14 // insert all elements of a certain row

15 dense (row−1, co l_ ind [i]) = va l [i] ;

16 i ++;

10

17 }

18 }

19

20 while (i < va l . size ()) {

21 // insert last row; this step would not be necessary if

22 // we had directly appended to rowptr the size of val.

23 dense (row−1, co l_ ind [i]) = va l [i] ;

24 i ++;

25 }

26

27 return dense ;

28 }

(b) Write a C++ function that converts a matrix in COO format to a matrix in CRS format. Try to be as

efficient as possible.

Hint: use std::sort.

SOLUTION:

1 void sort_byRow () {

2 // std::sort can sort by applying a specific comparison function,

3 // which is what is passed hereafter as third parameter using

4 // the lambda expressions syntax.

5 std : : s o r t (l i s t . begin () , l i s t . end () ,

6 [] (auto t1 , auto t2) {

7 return t1 . row () < t2 . row () ;

8 }) ;

9 }

1 MatrixCRS (MatrixCOO &A) {

2 // constructor from COO matrix

3 A. sort_byRow () ; // bring A to a more maneagable form

4

5 i n t prevNotEmptyRow = −1;

6 std : : vector <Tr ip le t <double>> & l = A. l i s t ;

7

8 for (i n t i =0; i < l . size () ; i ++) {

9

10 while (prevNotEmptyRow < l [i] . row ()) {

11 // if there are some empty rows, fill up rowptr

12 // following the conventions.

13 prevNotEmptyRow++;

14 this−>row_ptr . push_back (i) ;

15 }

16

17 double cur rVa l = l [i] . value () ;

18

19 while (l [i] . col () == l [i + 1] . col () &&

20 l [i] . row () == l [i + 1] . row ()) {

21 // add up the values corresponding to the same indices

22 cur rVa l += l [i] . value () ;

11

23 i ++;

24 }

25

26 this−>va l . push_back (cu r rVa l) ;

27 this−>co l_ ind . push_back (l [i] . col ()) ;

28 }

29 }

(c) What is the worst-case complexity of your function which converts COO to CRS?

SOLUTION:

Let k be the number of triplets. The complexity is dominated by O(k log k) due to the sorting of the

triplets, the rest of the operations are O(k).

(d) Test the correctness of your functions on the matrix provided in the template.

12

Problem 2.5: Multiplication in COO format

We want to design an algorithm which computes efficiently the multiplication of two sparse matrices

in COO format.

Template: COOMult.cpp

(a) Is the product of two sparse matrices always sparse? If not, is it always dense?

Hint: think about simple matrices, only made of columns, rows or diagonals of ones.

SOLUTION:

For example considering

A =

1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

, B =

1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

we have that AB is dense, while BA is sparse:

AB =

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

, BA =

6 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

.

(b) Implement a C++ function which computes the product between two matrices in COO format and

returns the result in COO format. Do not care about efficiency at this point.

SOLUTION:

1 s t a t i c MatrixCOO mult_naive (MatrixCOO &A, MatrixCOO &B) {

2 // naive implementation of COO matrices multiplication

3 MatrixCOO r e s u l t ;

4 for (auto t1 : A . l i s t) {

5 for (auto t2 : B . l i s t) {

6 i f (t1 . col () == t2 . row ()) {

7 Tr ip le t <double> t (t1 . row () , t2 . col () , t1 . value () ∗

t2 . value ()) ;

8 r e s u l t . l i s t . push_back (t) ;

9 }

10 }

11 }

12 return r e s u l t ;

13 }

13

(c) What is the asymptotic complexity of your naive implementation of Point (b)? Assume there are no

duplicates in the input triplet vectors.

SOLUTION:

The double loop iterates throughout all the triplets of A and B. As the COO format only stores nonzero

cells, the complexity is O(nnz(A) nnz(B)), assuming that there are no duplicates in the input triplet

vectors (more generally, if nTA and nTB are the numbers of triplets of A and B respectively, the com-

plexity is O(nTA nTB)).

(d) Implement a C++ function which computes the product between two matrices in COO format in an

efficient way.

Hint: sort the two lists of triplets in a convenient way.

SOLUTION:

1 void sort_byRow () {

2 std : : s o r t (l i s t . begin () , l i s t . end () ,

3 [] (auto t1 , auto t2) {

4 return t1 . row () < t2 . row () ;

5 }) ;

6 }

7

8 void sor t_byCol () {

9 std : : s o r t (l i s t . begin () , l i s t . end () ,

10 [] (auto t1 , auto t2) {

11 return t1 . col () < t2 . col () ;

12 }) ;

13 }

1 s t a t i c MatrixCOO m u l t _ e f f i c i e n t (MatrixCOO &A1 , MatrixCOO &A2) {

2 // efficient implementation of COO matrices multiplication

3

4 i f (&A1 == &A2) {// to avoid complications when A1 and A2 are the

5 // same object, (deep) copy by value A2.

6 MatrixCOO copyA2 (A2 . l i s t) ;

7 return m u l t _ e f f i c i e n t (A1 , copyA2) ;

8 }

9

10 MatrixCOO r e s u l t ;

11

12 // convenience renamings

13 vector <Tr ip le t <double>> &l 1 = A1 . l i s t ;

14 vector <Tr ip le t <double>> &l 2 = A2 . l i s t ;

15 vector <Tr ip le t <double>> & l r = r e s u l t . l i s t ;

16

17 // useful way of sorting the triplets

18 A1 . sor t_byCol () ;

19 A2 . sort_byRow () ;

14

20

21 // build vectors of indices b1 and b2, which contain the indices

22 // of elements which begin a new column for A1 and which begin a

23 // new row for A2.

24 vector < int > b1 ;

25 vector < int > b2 ;

26 b1 . push_back (0) ;

27 b2 . push_back (0) ;

28

29 for (i n t i =0; i < l 1 . size () −1; i ++) {

30 i f (l 1 [i] . col () != l 1 [i + 1] . col ()) {

31 b1 . push_back (i +1) ;

32 }

33 }

34 b1 . push_back (l 1 . size ()) ;

35

36 for (i n t j =0; j < l 2 . size () −1; j ++) {

37 i f (l 2 [j] . row () != l 2 [j + 1] . row ()) {

38 b2 . push_back (j +1) ;

39 }

40 }

41 b2 . push_back (l 2 . size ()) ;

42

43 // exploiting the special sorting of l1, l2 we are able to pass

44 // in a single loop all and only the elements of the matrices

45 // A1, A2 which will be paired when one computes A1*A2.

46 i n t i = 0 ;

47 i n t j = 0 ;

48

49 while (i < b1 . size ()−1 && j < b2 . size ()−1) {

50 i f (l 1 [b1 [i]] . col () == l 2 [b2 [j]] . row ()) {

51 // in this case, all the associated couples should be

52 // multiplied and the resulting triplets

53 // have to be added to result.

54 i n t c1 , c2 ;

55 for (c1 = b1 [i] ; c1 < b1 [i + 1] ; c1++) {

56 for (c2 = b2 [j] ; c2 < b2 [j + 1] ; c2++) {

57

58 Tr ip le t <double> t (l 1 [c1] . row () , l 2 [c2] . col () ,

59 l 1 [c1] . value () ∗ l 2 [c2] . value ()) ;

60

61 l r . push_back (t) ;

62 }

63 }

64 i ++;

65 j ++;

66 } else {

67 i f (l 1 [b1 [i]] . col () < l 2 [b2 [j]] . row ()) {

68 // due to sorting, if the column of l1 is smaller than

69 // the row of l2, eventual couples which can contribute

70 // to the product can be found only by increasing i.

71 i ++;

72 }

73 i f (l 1 [b1 [i]] . col () > l 2 [b2 [j]] . row ()) {

15

74 // same as previous, only the roles are reversed.

75 j ++;

76 }

77 }

78 }

79 return r e s u l t ;

80 }

(e) What is the asymptotic complexity of your efficient implementation? Assume there are no duplicates

in the input triplet vectors.

SOLUTION:

For simplicity let n := nnz(A) = nnz(B). The sorting performed at the beginning has complexity

O(n log n), while all the other operations, except the central loop of the algorithm, have linear complex-

ity. The central loop multiplies all and only the couples which are necessary to compute the product

matrix. If we denote as a the average number of times an entry of a matrix appears in an elementary

operation necessary for the computation of the product matrix, then the central loop has complexity

O(an). Notice that a depends on the sparsity pattern of the matrices involved: for example when A, B
are full then a = n, while when A, B are diagonal then a = 1. Therefore for matrices sparse enough

to guarantee that a = O(log n), the complexity is dominated by the initial sorting, and we expect the

efficient implementation to perform sensibly better than the naive (at least for large enough inputs). For

non-sparse/full matrices, we still obtain O(n2) complexity.

(f) Compare the timing of your functions for random matrices with different dimensions. Perform the

comparison first for products between sparse matrices, then for any kind of matrix.

SOLUTION:

1 i n t main () {

2 srand (t ime (0)) ;

3

4 i n t N = 100; // size of matrix

5 double sparseCoeff = 1 . / std : : log (N) ; // how much sparse the matrix

6 // should be (btw 0 and 1)

7

8 // generate full N*N matrix with random elements

9 MatrixXd A = MatrixXd : : Random(N,N) ;

10 MatrixXd B = MatrixXd : : Random(N,N) ;

11

12 // convert to COO format

13 MatrixCOO Acoo (A) ;

14 MatrixCOO Bcoo (B) ;

15

16 // define some random number generator

17 std : : random_device rd ;

18 std : : mt19937 g (rd ()) ;

19

20 // shuffle randomly the elements of the COO lists

16

21 std : : s h u f f l e (Acoo . l i s t . begin () , Acoo . l i s t . end () , g) ;

22 std : : s h u f f l e (Bcoo . l i s t . begin () , Bcoo . l i s t . end () , g) ;

23

24 // keep only part of COO lists, proportionally to sparseCoeff

25 i n t n = sparseCoeff∗N∗N;

26 Acoo . l i s t . resize (n) ;

27 Bcoo . l i s t . resize (n) ;

28 cout << " M u l t i p l i c a t i o n o f " << N << " x " << N << " matr ices w i th "

29 << n << " non−zero elements . " ;

30

31 // time naive multiplication

32 auto s t a r t _ n a i v e = std : : chrono : : system_clock : : now () ;

33 MatrixCOO : : mul t_naive (Acoo , Bcoo) ;

34 auto end_naive = std : : chrono : : system_clock : : now () ;

35

36 // time efficient multiplication

37 auto s t a r t _ e f f = std : : chrono : : system_clock : : now () ;

38 MatrixCOO : : m u l t _ e f f i c i e n t (Acoo , Bcoo) ;

39 auto end_ef f = std : : chrono : : system_clock : : now () ;

40

41 cout << " Time r a t i o naive / e f f i c i e n t implementat ion : "

42 << (double) (end_naive−s t a r t _ n a i v e) . count () /

(end_eff−s t a r t _ e f f) . count () ;

43 }

For high values of non-zero entries, the efficient implementation outperforms sensibly the naive algo-

rithm, especially for sparse matrices. However for small values of non-zero entries the naive implemen-

tation is faster.

17

	Problem 2.1: Solving sequential linear systems (prb:solveSeqSystems)
	Problem 2.2: Blockwise linear solver (prb:blLU)
	Problem 2.3: Resistance to impedance map (prb:circuitimpendance)
	Problem 2.4: Triplet format to CRS format (prb:triplettoCRS)
	Problem 2.5: Multiplication in COO format (prb:matmatCOO)

