NumCSE

Autumn Semester 2017
Prof. Rima Alaifari

Exercise sheet 2
Linear systems, sparse matrices

A. Dabrowski

Problem 2.1: Solving sequential linear systems

Given a matrix A and vectors by, ..., b,, we want to find (efficiently) vectors xy, ..., X;; such that
Ax; = b;foreveryi=1,...,m.

Template: solveSeqgSystems. cpp

(@) Implement a C++ function which accepts as input an n X n matrix A, an n X m matrix B, ann x m
matrix X, and overwrites X so that , .
AX') =B (2.1)
holds for every i. The superscript notation X! indicates the i-th column of X. Use a decomposition and
solver of your choice (for example Ful1PivLU () from Eigen) at every step i.

SOLUTION:

1 |void solve_naive (const MatrixXd &A, const MatrixXd &b, MatrixXd &X) {

)

for(int i = 0; i < b.cols(); i++) {
X.col(i) = A.fullPivLu () .solve(b.col(i)):

}

o o »

(b) Inanother C++ function, design an efficient implementation of Point (a) using the LU-decomposition
of A.

SOLUTION:

void solve_LU(const MatrixXd &A, const MatrixXd &b, MatrixXd &X) {
FullPivLU <MatrixXd> LU = A.fullPivLu () ;
for(int i = 0; i < b.cols(); i++) {

X.col(i) = LU.solve(b.col(i));
}

oo ~ [} o »~ w n -

(c) What is the complexity of each of your implementations?

SOLUTION:

The complexity of the LU decomposition of an n x n matrix is O(n3). The complexity of backsubstitution
for a matrix of size n X n is O(nZ). Therefore performing both LU decomposition and backsubstitution
m times has a cost of O(mn3) operations, while performing once the LU decomposition and m times
only the backsubstitution has a cost of O(mn? + n3). If m ~ n, the first strategy has complexity O(n*)
while the second O(n3).

Problem 2.2: Blockwise linear solver

We want to solve a linear system where the matrix has a structure particularly suitable for block
operations.

Template: blockLinSolvers.cpp

Let
R v
A= 2.2
|:uT O:| ()
where u, v € R"” and R € R"" is upper triangular and invertible.
We first use an approach which relies on LU-decomposition.

(a) Compute the blockwise LU-decomposition of A.

SOLUTION:

The LU-decomposition is:

(b) Show that A is invertible if and only if u’ R~1v # 0.

SOLUTION:

A is regular if and only if det(A) # 0.
det(A) = det(L) det(U) = det(L) det(R)(u'R~1v) (2.3)

det(L) = 1 and R is regular, so det(R) # 0, which leaves u’ R~'v # 0 as necessary and sufficient
condition.

(c) Implement a C++ function which accepts as input R, u, v, b, x and writes in x the solution of Ax = b,
where A is the matrix given in (2.2). Make use of the blockwise LU-decomposition you derived in Point
(a) and only use elementary operations (no solvers from Eigen).

SOLUTION:

VectorXd solve_backSub(const MatrixXd& R, const VectorXd& c)
{

int n = R.rows() ;
VectorXd y(n);

// Since R is upper triangular, we can solve by backwards substitution
for (int i =n—1; i >= 0; —i)

{

© ® N o o @~ W N o=

y(i) =c(i);

for (int j =n—1; j > i ; —j)

o

11 {

12 y(i) —=R(i,j) = y(j);

13 }

14 y(i) /= R(i,i);

15 }

16 return vy;

17 }

18

19 |void solve_blockLU (const MatrixXd &R,

20 const VectorXd &u,

21 const VectorXd &v,

22 const VectorXd &b,

23 VectorXd &x) ({

24

25 int n = R.rows () ;

26 VectorXd y(n+1);

27 //

28 // Solve Ly = b by forward substitution.
29 y.head(n) = b.head(n);

30 y(n) = b(n) — u.transpose() * solve_backSub (R, y.head(n));
31

32 // Solve Ux = y by backward substitution.
33 MatrixXd U(n+1,n+1);

34 U << R, v,

35 VectorXd::Zero(n) .transpose (), —u.transpose () *solve_backSub(R,v) ;
36

37 x = solve_backSub(U,y);

3 |}

(d) What is the asymptotic complexity of your implementation?

SOLUTION:

The backward substitution for R~!x is O(n?), vector dot product and subtraction of vectors is O (1), so
that the complexity is dominated by the backward substitution: O(nz).

We move on to an approach which relies on blockwise Gaussian elimination.

(e) Determine expressions for z € IR”, ¢ € R such that
R v|lz| |b
ul 0]|Z] — |B

Hint: Use blockwise Gaussian elimination.

for arbitrary b € R", 8 € R.

SOLUTION:

Applying the block Gauss elimination, we obtain:

-

with s := —(u'R71v), bs := (B —u R™'b).

)

Implement a C++ function as in Point (c) which computes the solution to Ax = b. This time however,

use the blockwise decomposition from Point (e).

Hint: You can rely on the triangularView () function to instruct EIGEN of the triangular structure

of R.

SOLUTION:

void solve_blockGauss (const MatrixXd &R,

const VectorXd &u,
const VectorXd &v,
const VectorXd &b,
VectorXd &x) {

int n = R.rows() ;

const TriangularView<const MatrixXd, Upper> & triR =
R.triangularView <Upper>() ;

double sinv = — 1. / u.dot(triR.solve(v));
double bs = (b(n) — u.dot(triR .solve(b.head(n))));
double sinvbs = sinvsxbs;

X << triR.solve(b.head(n) — vxsinvbs),
sinvbs;

(g) What is the asymptotic complexity of your implementation?

SOLUTION:

As before, the complexity is dominated by the backward substitution, this time hidden in the solver for
the triangular view matrix, but still of complexity O(n?).

Problem 2.3: Resistance to impedance map

We apply the Sherman-Morrison-Woodbury update formula to analyze an electric circuit.

Template: circuitImpedance.cpp

We want to compute the impedance of the circuit drawn in Fig. 1 as a function of a variable resistance of
a single circuit element.

The circuit contains 27 identical linear resistors with resistance R = 1, and a variable resistance Ry
between nodes 14 and 15. Excitation is provided by a voltage V imposed at node 16. We consider only
direct current operation (stationary setting), that means all currents and voltages are real-valued.

1 R 2 R 3 R 4

(a) (optional) Compute voltages and currents in the circuit by means of nodal analysis. Understand how
this leads to a linear system of equations for the unknown nodal potentials (the fundamental laws of
circuit analysis should be known from physics as well as the principles of nodal analysis). The circuit
matrix Ar, and the right-hand-side b of the resulting linear system is already coded in the template; if
you do not want to derive it yourself you can directly skip to the next point.

Hint: use Kirchhoff’s current law and Ohm’s law to determine the coefficients of the matrix Ag_ such
that Az v = b, where v; is the voltage at node i, and b is the zero vector (except for the position
corresponding to the source term at node 16).

SOLUTION:

We use Kirchhoff’s first law, stating that the sum of the currents incident to a node is zero. We use Ohm’s
law to rewrite the current in terms of voltage and resistance: the current flowing in connection a to b is
L., := Agp0/R. Here, we denote by Av;; := (v; — v;). Let v € R be the vector of voltages at the
nodes. Set fr := R/R,. The system (obtained applying Kirchhoff’s law for each node i = 1,...,15)

becomes:

(Avl,Z + Avys =0
Avyq + Avpz + Avas + Avp 1y =0
Avszp + Avg 4 + Avs g5 =0
Avyz + Avyg + Avy s =0
Avs 1 + Avsy + Avs 7 + Avs 14 =0
Avg 4 + Avg g + Avg 15 + Avg 16 =0
Avy 5+ Avg1g + Avyq1 + Avg gy =0
Avgg + Avg 12 + Avg 13 + Avgs =0 (2.4)
Avg g + Avgg + Avg 13 =0
Avyg7 + Avio1 =0
Av11,7 + Av1y,10 + Avrg,12 + Avipz =
Avip 8 + Avin11 + Avio3 =0

Avizg + Aviz g9 + Aviz 12 =
Av1ap + Av1as + AvV1a17 + fR, AV1415 =
Avi53 + Avis 4 + Avise + Avisg + fr, Avis 14 = 0.

\

We rescaled each equation multiplying by R. We have the extra conditions v14 := V and v17 = 0, due
to the ground/source voltages. The unknowns of the system are voltages v; forj =1,...,15. Define

X = [Z)l,. . .,’015]T,

2 -1 0 0 -1 0 0 0 0 0 0O 0 0 0 0
-1 4 -1 0 -1 0 0 0 0 0 0 0 0 -1 0
o -1 3 -1 0 0 0 0 0 0 0 0 0 0 ~1
o 0 -1 3 0 -1 0 0 0 0 0 0 0 0 ~1
1 -1 0 0 4 0 -1 0 0 0 0 0 0 -1 0
O 0 0 -1 0 4 0 0 -10 0 0 0 0 ~1
o 0 0 0 -1 0 4 0 0 -1-10 0 0 0

Ag,.=|0 0 0 0 0 0 0 4 -1 0 0 -1 -1 0 ~1
o 0 0 0 0 -1 0 -13 0 0 0 -1 0 0
o 0 0 0 0 0 -1 0 0 2 -1 0 0 0 0
o 0 0 0 0 0 -1 0 0 -1 4 -1 0 0 0
o 0 0 0 0 0 0 -1 0 0 -1 3 -1 0 0
o 0 0 0 0 0 0 -1-10 0 -1 3 0 0
0o -1 0 0 -1 0 0 0 0 0 0 0 0 3+%x —-%
0 0 -1-10 -10 -1 0 0 0 0 0 -£ 44X

and b € R as the zero vector except in position 5 where it takes value V. Then the linear system
which we want to solve is
AR x = b.

X

(b) Characterize the change in the circuit matrix Ag_ induced by a change in the value of R, as a low-rank
modification of the circuit matrix A; (that is the matrix Ag_ with R, = 1). Use the matrix A; as your
“base state”.

Hint: four entries of the circuit matrix will change. This amounts to a rank-1-modification for suitable
vectors.

SOLUTION:

Define f := R/R, and the vectors

0 0
u:= |9 |,v:= 0o |-

1 f-1

—1 _1—f_

Then

Then from the SMW formula
-1 -1
1 a1 A1 uvTA1
x 1+vTA] 'u

(c) Using EIGEN, implement a C++ function which returns the impedance of the circuit from Figure 1, when
supplied with Al_1 and a specific value for R,.. Recall that the impedance of the circuit is the quotient of
the voltage at node 16 with the current through node 16. This function should be implemented efficiently
using the Sherman-Morrison-Woodbury formula.

SOLUTION:

1 |double calc_impedance (const MatrixXd &A1linv, const VectorXd &b, double Rx,
double V) {

2

3 // create u and v

4 double f = 1/Rx;

5 VectorXd u = VectorXd::Zero(b.size());

6 VectorXd v = VectorXd::Zero(b.size());

7 u(13) = 1;

8 u(14) = —1;

9 v(13) = f—1;

10 v(14) = 1—1;

11

12 // Use SMW formula

13 double alpha = 1 + v.transpose() * Alinv x u;

14 VectorXd y = Alinv x b;

15 VectorXd x = y — Alinv % u x v.transpose() *x y / alpha;

16

17 return V / (V — x(5));

18 }

(d) Test your function using V = 1 and R, = 1,2,22,...,210 (as a reference value, for R, = 1024 you
should obtain an impedance of 2.65744).

SOLUTION:

for (int i = 0; i <= 10; i++) {
std::cout << "For Rx = 2"" << i << " the impedance is "
<< calc_impedance (Alinv, b, 1 << i, V) << std::endl;

Problem 2.4: Triplet format to CRS format

We want to devise a function that converts a matrix given in triplet/coordinate list (COQO) format to
the compressed row storage (CRS) format.

Template: COOtoCRS. cpp

Let A indicate an arbitrary matrix.

The COO format of A stores a collection of triplets (i, j, v), with i, j € IN the indices, and v € R the non-
zero value which contributes to the element in position (i, j) of A. Multiple triplets corresponding to the
same position are allowed, meaning that multiple values with the same indices (i, j) should be summed
together to obtain the actual content in position (i, j) of A.

The CRS format uses three vectors:

1. val, which stores the values of the nonzero entries of A, read from left to right and then from top
to bottom;

2. col_ind, which stores the column indices of the elements in val;

3. row_ptr, which stores in position j the index of the entry in val which is the first element of the
row j of A.

The case of rows only made by zero elements require special consideration. The usual convention, which
we adopt, is that if the j-th row of the matrix is empty, then row_ptr has in position j the same entry
which is in position j + 1.

(a) Implement two C++ functions which respectively convert the COO and the CRS format to EIGEN dense
matrices. Implement two other C++ functions which convert EIGEN dense matrices to COO and CRS.

Hint 1: For COO, you can use Eigen: : Triplet<double> to store each triplet and std: : vector to
store the collection of triplets. For CRS, you can use three std: : vector. You can either implement
wrapper classes for COO and CRS objects or work with the raw data structures.

Hint 2: If it is convenient, you can append to row_pt r the length of val minus 1.

SOLUTION:
From dense to COO.

MatrixCOO (MatrixXd &A) {
// constructor from Eigen dense matrix
for (int i=0; i < A.rows(); i++) {
for (int j=0;] < A.cols(); j++) {
if (A(i,j) !'= 0) {
Triplet<double> t(i, j, A(i,j));
list.push_back(t);

© ® N o o @~ W N o=

- o
—
—

From COO to dense.

1 MatrixXd toDense() {

2 // returns an Eigen dense version

9

3 MatrixXd dense(this—rows(), this—cols());

4 for (auto t : list) {

5 dense(t.row(), t.col()) = t.value();
6 }

7 return dense;

From dense to CRS.

1 MatrixCRS (MatrixXd &A) {

2 // constructor from Eigen dense matrix

3 int nnz = 0; // number of non-zero elements

4 int prevNotEmptyRow = —1;

5

6 // fill up val and colind by looping through triplets

7 // some additional care must be taken for empty rows for rowptr
8 for (int i=0; i < A.rows(); i++) {

9 bool emptyRow = true;

11 for (int j=0;] < A.cols(); j++) {
12 if (A(i,j) != 0) {

13 NNz ++;

14 val.push_back(A(i,j));
15 col_ind.push_back(j);

16 emptyRow = false;

17 }

18 }

19

20 if (!emptyRow) {

21 for (int c = prevNotEmptyRow; ¢ < i; c++) {
22 row_ptr.push_back(nnz);
23 }

24 prevNotEmptyRow = i;

25 }
2 }
27 }

From CRS to dense.

1 MatrixXd toDense() {

2 // conversion to Eigen dense matrix

3 int nRows = this—>rows() ;

4 MatrixXd dense(nRows, this—cols());

5 int row = 0;

6 int i = 0;

7

8 while (row < nRows) {

9 do { // some extra care for empty rows
10 FOW ++;

1 } while (row_ptr[row—1] == row_ptr[row]) ;
12

13 while (i < row_ptrirow]) {

14 // insert all elements of a certalin row
15 dense(row—1, col_ind[i]) = val[i];

16 i ++;

10

20 while (i < val.size()) {

21 // insert last row; this step would not be necessary if
22 // we had directly appended to rowptr the size of val.
23 dense(row—1, col_ind[i]) = val[i];

24 i++;

25 }

26

27 return dense;

28 }

(b) Write a C++ function that converts a matrix in COO format to a matrix in CRS format. Try to be as
efficient as possible.

Hint: use std: : sort.

SOLUTION:

1 void sort_byRow () {

2 // std::sort can sort by applying a specific comparison function,
3 // which is what is passed hereafter as third parameter using
4 // the lambda expressions syntax.

5 std::sort(list.begin(), list.end(),

6 [] (auto t1, auto t2) {

7 return t1.row() < t2.row();

8 b

: }

1 MatrixCRS (MatrixCOO &A) {

2 // constructor from COO matrix

3 A.sort_byRow(); // bring A to a more maneagable form

4

5 int prevNotEmptyRow = —1;

6 std ::vector<Triplet<double>> &l = A.list;

7

8 for (int i=0; i < |.size(); i++) {

9

10 while (prevNotEmptyRow < I[i].row()) {

0 // 1if there are some empty rows, fill up rowptr
12 // following the conventions.

13 prevNotEmptyRow ++;

1 this —row_ptr.push_back(i);

15 }

16

17 double currVal = I[i].value();

18

19 while (I[i].col() == I[i+1].col() &&

20 I[i].row() == I[i+1].row()) {

21 // add up the values corresponding to the same indices
22 currVal += I[i].value();

11

23 i++;
24 }

25
26 this—val.push_back(currVal);

27 this —col_ind.push_back(I[i].col());
28 }

29 }

(c¢) What is the worst-case complexity of your function which converts COO to CRS?

SOLUTION:

Let k be the number of triplets. The complexity is dominated by O(klogk) due to the sorting of the
triplets, the rest of the operations are O(k).

(d) Test the correctness of your functions on the matrix provided in the template.

12

Problem 2.5: Multiplication in COO format

We want to design an algorithm which computes efficiently the multiplication of two sparse matrices
in COO format.

Template: COOMult . cpp

(a) Is the product of two sparse matrices always sparse? If not, is it always dense?

Hint: think about simple matrices, only made of columns, rows or diagonals of ones.

SOLUTION:

For example considering

[1 0 0 0 0 O] (1 11 1 1 1]
100000 00O0O0O0OTO O
A_lOOOOOB_OOOOOO
{1 00O0O0O0O”" |OO0O0O0O0O0}
100 00O 000O0O0ODO
10 000 0 0 00 0 0 0]
we have that AB is dense, while BA is sparse:
1 11 1 1 1] (6 0 0 0 0 O]
111111 00O0O0O0O
111111 000O0O0O
AB_111111’BA_000000
111111 000O0O0O
11111 1] 0 00 0 0 0]

(b) Implement a C++ function which computes the product between two matrices in COO format and
returns the result in COO format. Do not care about efficiency at this point.

SOLUTION:

static MatrixCOO mult_naive (MatrixCOO &A, MatrixCOO &B) {
// naive implementation of COO matrices multiplication
MatrixCOO result;
for (auto t1 : A.list) {
for (auto t2: B.list) {
if (t1.col() == t2.row()) {
Triplet <double> t(t1.row(), t2.col(), t1.value() *
t2.value());
result.list.push_back(t);

~ o o »~ w n -

10 }
1 }

12 return result;

13

(c) What is the asymptotic complexity of your naive implementation of Point (b)? Assume there are no
duplicates in the input triplet vectors.

SOLUTION:

The double loop iterates throughout all the triplets of A and B. As the COO format only stores nonzero
cells, the complexity is O(nnz(A) nnz(B)), assuming that there are no duplicates in the input triplet
vectors (more generally, if nT 4 and n'Tg are the numbers of triplets of A and B respectively, the com-
plexity is O(nT4 nTg)).

(d) Implement a C++ function which computes the product between two matrices in COO format in an
efficient way.

Hint: sort the two lists of triplets in a convenient way.

SOLUTION:

1 void sort_byRow () {

2 std::sort(list.begin(), list.end(),
3 [l (auto t1, auto t2) {

4 return t1.row() < t2.row();
5 1)

6 }

7

8 void sort_byCol () {

9 std::sort(list.begin(), list.end(),
10 [l (auto t1, auto t2) {

1 return t1.col() < t2.col();

12 }),

1 static MatrixCOO mult_efficient (MatrixCOO &A1, MatrixCOO &A2) ({

2 // efficient implementation of COO matrices multiplication
3

4 if (&A1 == &A2) {// to avoid complications when Al and A2 are the
5 // same object, (deep) copy by value AZ2.

6 MatrixCOO copyA2(A2.list);

7 return mult_efficient (A1, copyA2);

8 }

9

10 MatrixCOO result;

1

12 // convenience renamings

13 vector<Triplet <double>> &1 = Al.list;

14 vector<Triplet <double>> &2 = A2.list;

15 vector<Triplet <double>> &Ir = result.list;

16

17 // useful way of sorting the triplets

18 Al.sort_byCol () ;

19 A2.sort_byRow () ;

14

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

// build vectors of indices bl and b2, which contalin the indices
// of elements which begin a new column for Al and which begin a
// new row for AZ2.

vector<int> b1;

vector<int> b2;

b1.push_back(0);

b2.push_back(0) ;

for (int i=0; i < |1.size()—1; i++) {
if ([M[i].col() != I1[|+1] col())

! {
b1.push_back(i+1);

}

}
b1.push_back(I1.size());

for (int j=0; | < |12.size()—1; j++) {
if (I12[j].row() !'= I2[j+1].row())
b2.push_back(j+1);

{

}

}
b2.push_back(I12.size());

// exploiting the special sorting of 11, 12 we are able to pass
// in a single loop all and only the elements of the matrices
// Al, A2 which will be paired when one computes Al#*AZ.

int i = 0;

int | = 0;

while (i < b1l.size()—1 & j < b2.size()—1) {
if (11[b1[i]].col() == I2[b2[j]].row()) {
// in this case, all the associated couples should be
// multiplied and the resulting triplets
// have to be added to result.

int c1, 02,
for (c1 = Dbi1[i]; ¢c1 < b1[i+1]; c1++) {
for (c2 = b2[j]; c2 < b2[j+1]; c2++) {

Triplet <double> t(I1[c1].row(), 12[c2].col(),
[1[ct1].value() = 12[c2].value());

r .push_back(t);

}

i ++;

j++;

} else {

if (11[b1[i]].col() < I12[b2[j]].row()) {
// due to sorting, 1if the column of 11 is smaller than
// the row of 12, eventual couples which can contribute
// to the product can be found only by increasing 1i.
i ++;

}

if (11[b1[i]]l.col() > I12[b2[j]].row()) {

15

74 // same as previous, only the roles are reversed.
75 j++;

76 }

77 }

78 }

79 return result;

80 }

(e) What is the asymptotic complexity of your efficient implementation? Assume there are no duplicates
in the input triplet vectors.

SOLUTION:

For simplicity let n := nnz(A) = nnz(B). The sorting performed at the beginning has complexity
O(nlogn), while all the other operations, except the central loop of the algorithm, have linear complex-
ity. The central loop multiplies all and only the couples which are necessary to compute the product
matrix. If we denote as a the average number of times an entry of a matrix appears in an elementary
operation necessary for the computation of the product matrix, then the central loop has complexity
O(an). Notice that 7 depends on the sparsity pattern of the matrices involved: for example when A, B
are full then @ = n, while when A, B are diagonal then @ = 1. Therefore for matrices sparse enough
to guarantee that 2 = O(logn), the complexity is dominated by the initial sorting, and we expect the
efficient implementation to perform sensibly better than the naive (at least for large enough inputs). For
non-sparse/full matrices, we still obtain O(1n%) complexity.

(f) Compare the timing of your functions for random matrices with different dimensions. Perform the
comparison first for products between sparse matrices, then for any kind of matrix.

SOLUTION:

int main() {
srand (time (0)) ;

int N = 100; // size of matrix
double sparseCoeff = 1./std::log(N); // how much sparse the matrix

// should be (btw 0 and 1)

// generate full N#N matrix with random elements

MatrixXd A = MatrixXd ::Random(N,N) ;
10 MatrixXd B = MatrixXd ::Random(N,N) ;
11
12 // convert to COO format
13 MatrixCOO Acoo(A) ;
14 MatrixCOO Bcoo(B) ;
15
16 // define some random number generator
17 std ::random_device rd;
18 std :: mt19937 g(rd());
19
20 // shuffle randomly the elements of the COO lists

16

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

For high values of non-zero entries, the efficient implementation outperforms sensibly the naive algo-
rithm, especially for sparse matrices. However for small values of non-zero entries the naive implemen-

std:: shuffle (Acoo. list .begin(), Acoo.list.end(), g);
std :: shuffle (Bcoo. list.begin(), Bcoo.list.end(), g);

// keep only part of COO lists, proportionally to sparseCoeff
int n = sparseCoeff*NxN;
Acoo. list .resize(n);

Bcoo. list .resize(n);

cout << "Multiplication of

<< N << "x" << N << " matrices with

non—zero elements. ";

<< N <<

// time naive multiplication

auto start_naive = std::chrono::system_clock::now() ;
MatrixCOO :: mult_naive (Acoo, Bcoo) ;

auto end_naive = std::chrono::system_clock::now() ;

// time efficient multiplication

auto start_eff = std::chrono::system_clock::now() ;

MatrixCOO :: mult_efficient (Acoo,Bcoo) ;

auto end_eff = std::chrono::system_clock::now() ;

cout << "Time ratio naive/efficient implementation: "

<< (double) (end_naive—start_naive).count() /
(end_eff—start_eff).count();

tation is faster.

17

	Problem 2.1: Solving sequential linear systems (prb:solveSeqSystems)
	Problem 2.2: Blockwise linear solver (prb:blLU)
	Problem 2.3: Resistance to impedance map (prb:circuitimpendance)
	Problem 2.4: Triplet format to CRS format (prb:triplettoCRS)
	Problem 2.5: Multiplication in COO format (prb:matmatCOO)

